The Astrophysics Program of NOvA

Matthew Strait (University of Minnesota)
Oleg Samoylov (JINR)
For the NOvA Collaboration

The NOvA detectors, designed primarily to discover and measure electron neutrino appearance in a muon neutrino beam, are versatile instruments being used for a variety of astrophysical analyses.

Multimessenger Astronomy with Gravitational Waves
- MeV-TeV signals: broad search for any excess
- Especially sensitive to supernova-like neutrinos
- Pre-2019: 100% live for some topologies ≥100MeV, otherwise 0.5% minimum bias
- 2019-present: 100% live for few-MeV - 45s window
- No excesses in 28 LVC events. arXiv:2001.07240. Accepted by PRD.
- Galactic supernova origin of GW largely ruled out for 5 fully-triggered events in 2019

Magnetic Monopoles
- Little theoretical guidance on mass
- Far Detector unique in being a large surface tracking detector
- Light monopoles would not reach underground
- β < 0.01: unmistakable slow track
- β > 0.01: highly ionizing track
- 1700 live-days and counting

Neutron/Anti-neutron Oscillations
- Search for n → \(\bar{n}\) conversion in \(^{12}\)C
- Typically pions in symmetric star
- Suppressed in nuclei; less in C than O: advantage over water detectors
- Surface detector, but expect to be limited by atmospheric neutrinos
- 700 live-days and counting

Dark Matter
- Trigger on upwards-going muons at night
- Search for dark matter annihilation in the Sun
- Remove cosmic muons by timing
- Major background: atmospheric neutrinos

Neutrino/anti-neutrino Oscillations
- Search for n → \(\bar{n}\) conversion in \(^{12}\)C
- Typically pions in symmetric star
- Suppressed in nuclei; less in C than O: advantage over water detectors
- Surface detector, but expect to be limited by atmospheric neutrinos
- 700 live-days and counting

Seasonal Multiple-muon Effect
- Total muon rate underground well-known to be higher in summer
- MINOS observed winter maximum for multiple muons
- Far Detector analysis of surface flux underway

Neutrinos
- Increases with multiplicity
- Origin unknown, thought to be reinteractions of pions in denser winter atmosphere
- Identify high energy muons by the showers they induce
- Measure flux over 100 GeV

Studies of the High Energy Cosmic Ray Flux
- Identify high energy muons by the showers they induce
- Measure flux over 100 GeV

Multimessenger Astronomy with Gravitational Waves
- MeV-TeV signals: broad search for any excess
- Especially sensitive to supernova-like neutrinos
- Pre-2019: 100% live for some topologies ≥100MeV, otherwise 0.5% minimum bias
- 2019-present: 100% live for few-MeV - 45s window
- No excesses in 28 LVC events. arXiv:2001.07240. Accepted by PRD.
- Galactic supernova origin of GW largely ruled out for 5 fully-triggered events in 2019

Magnetic Monopoles
- Little theoretical guidance on mass
- Far Detector unique in being a large surface tracking detector
- Light monopoles would not reach underground
- β < 0.01: unmistakable slow track
- β > 0.01: highly ionizing track
- 1700 live-days and counting

Neutron/Anti-neutron Oscillations
- Search for n → \(\bar{n}\) conversion in \(^{12}\)C
- Typically pions in symmetric star
- Suppressed in nuclei; less in C than O: advantage over water detectors
- Surface detector, but expect to be limited by atmospheric neutrinos
- 700 live-days and counting

Dark Matter
- Trigger on upwards-going muons at night
- Search for dark matter annihilation in the Sun
- Remove cosmic muons by timing
- Major background: atmospheric neutrinos

Neutrino/anti-neutrino Oscillations
- Search for n → \(\bar{n}\) conversion in \(^{12}\)C
- Typically pions in symmetric star
- Suppressed in nuclei; less in C than O: advantage over water detectors
- Surface detector, but expect to be limited by atmospheric neutrinos
- 700 live-days and counting

Seasonal Multiple-muon Effect
- Total muon rate underground well-known to be higher in summer
- MINOS observed winter maximum for multiple muons
- Far Detector analysis of surface flux underway

Neutrinos
- Increases with multiplicity
- Origin unknown, thought to be reinteractions of pions in denser winter atmosphere
- Identify high energy muons by the showers they induce
- Measure flux over 100 GeV

Studies of the High Energy Cosmic Ray Flux
- Identify high energy muons by the showers they induce
- Measure flux over 100 GeV

This manuscript has been authored by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy, Office of Science, Office of High Energy Physics and Russian Science Foundation grant #18-12-00271.