

CCQE in Neutrino Oscillation Experiments

- Oscillation experiments measure number of neutrinos •energy
- Large fraction of events at low E_v are CCQE
- Can get energy from just lepton kinematics
- How is CCQE defined? $v + n \rightarrow \mu + p$
- Experimentally, measure **Quasi-elastic-like**
- Require only muon and nucleons
- Can't detect low energy or interacting mesons

Double-Differential v_u Charged Current Quasi-Elastic-Like Cross Section on Plastic Scintillator in Muon Momentum from MINERvA Andrew Olivier-University of Rochester, Mateus F. Carneiro-Oregon State University, Centro Brasileiro de Pesquisas Físicas

on Behalf of the MINERvA Collaboration

Double-Differential Cross Section

• Large phase space: 4/15 bins on 1.5 GeV < p_{\parallel} < 20 GeV shown • 2p2h tune improves agreement in some p_{\parallel} bins • Generally shifted toward higher p_

Differential Cross Section in Q²

- 4 decades of Q²
- Cross sections match despite different energy regimes \rightarrow dipole form factor effective
- Medium Energy more sensitive at high Q^2_{OE}
- ~8% uncertainty averaged in Q^2_{OF}

opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation. This document was prepared by members of the MINERvA Collaboration using the resources of the Fermi National Accelerator Laboratory (Fermilab), a U.S. Department of Energy, Office of Science, HEP User Facility. Fermilab is managed by Fermi Research Alliance, LLC (FRA), acting under Contract No. DE-AC02-07CH11359.