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Precision predictions in HEP and
non-equilibrium dynamics in the B NG\
early universe require quantum BN\ ()
computational technologies. Fu- s
ture quantum devices offer the
possibility of performing these,
complementing lattice quantum
chromodynamics (QCD) studies
on classical computers.

We are investigating many aspects of the guantum simulation of quan-
tum field theories. Specific topics include simulation-suitable formu-
lations of gauge theories, state preparation, time evolution, extracting
HEP-related observables from simulations, quantum error correction
(QEC), and entanglement. We are exploring strategies for simulation
of scattering in QFTs, and dynamics of the early Universe.
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Figure 1: Event in the CMS Experiment detector from 7
TeV collisions. (Image credit: CMS)

Formulations of Quantum Field Theories
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Figure 3: The expectation value of an SU(2) Wilson loop
normalized to its true value as a function of qubits per site
for several digitization schemes. A 10% error is attainable
for as little as 7 qubits (2)

Figure 2: A loop-string-hadron (LSH)
formulation for SU(2) Hamiltonian lattice
gauge theory (1)

Efficient choices of basis, truncation, and quantum gate implementa-
tion are critical, particularly in the NISQ era. Our team has developed
several promising options for simulating both gauge (7-3) and scalar
theories (4, 5). As these options mature, resource cost estimates and

comparisons can be made.
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Figure 4: The phonon number distribu- Figure 5: (left) Schwinger-Keldysh contour as real- (o) and

tion in the polaron state for different val-

. . » , 8 |
ues of the coupling strength (4). imaginary-time (o) path integrals. At (o) two path mtegnzls are

matched, at (o) one inserts O (right) how smearing, 0|¥Y| =Y, and
sources P allow general state preparation (6)
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State Preparation

Leveraging renormalization group and lat-
tice QCD ideas, new state preparation
aLiAE1 protocols for

SODe

1

1

— @ os

1 1

\ - 1
(o)1

strongly-coupled
0) 22 - states have been
¢ found with fewer
0 R resources (6-8).
Figure 6: Quantum circuit for prepar-  \Nork is Ongging
ing an arbitrary real wavefunction for a _ . )
scalar field (7) with ngettl o

initialize a scalar theory ground state.

Simulating Time Evolution of QFTs

We are continuing to develop algorithms
for time evolution of QFTs. Simulations
of a truncated, low-dimensional non-Abelian
gauge theory were performed with IBM (3).
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Figure 7: Expectation value of the electric enerqgy contribution of the

first plaguette in a two-plaquette non-Abelian lattice field theory using

IBM'’s Tokyo (3)

Quantum Error Correction

Error correction is required for precision pre-
dictions from QFT. Studies have started of
the interplay of QEC and continuous sym-
metries that arise in QFT (9).
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Figure 8: A code £; _, o maps a logical state |x) to a physical state |y) 2
composed of several subsystems A = A1 ® --- Ay,. While a subsystem

can be erased, N _, a» A good error-correcting code recovers the original
logical state |x) by applying RY, ., (9)
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Entanglement and QCD

QIS-inspired insight has lead to the discov-
ery of new properties related to entangle-
ment in nonperturbative QCD (70, 17)

Observables for Colliders
We have shown how

PEEREY 2 .
0.15 to compute parton dis-
3 o tribution functions (72)

and how many prop-
erties can be obtained
with few measure-
re . ments (73). These
T simaintor 121" will be  extended to
fragmentation functions and viscosity.
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Figure 9: PDF of a 1+1d

Outlook: Simulating Cosmology

Our methods can be extended to early uni-
verse processes like: QFTs in curved space-
times, bubble collisions, and CP-violating
transmissions of fermions off bubbles.
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Figure 10: We are developing formalism for (left) QFIs in expanding
backgrounds and (right) baryogenesis in the expanding universe.
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