Plasma Processing to Mitigate Field Emission in LCLS-II 1.3 GHz SRF Cavities

FERMILAB-POSTER-20-011-TD

Plasma Cleaning to Reduce FE

A collaboration between Fermilab, SLAC and ORNL is working to develop plasma processing for 1.3GHz TESLA shaped SRF cavities.

Hydrocarbon $(C_x H_y)$ contaminations and adsorbates lower the cavity surface work function (Φ) increasing Field Emission (FE). Plasma processing removes $C_x H_v$ allowing the cavity to operate

Effect of plasma on Q- factor of N-doping

RF test proved that plasma preserves the high Q and quench field of N-doped cavity

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 E_{acc} [MV/m]

at higher E_{acc}.

A 10% increase in Φ gives a 15% increase in E_{acc}

 $O_2 + C_x H_v \rightarrow CO + CO_2 + H_2O$

Plasma cleaning: glow discharge ignited at room temperature using an inert gas (Ne or Ar). A low % of O_2 is added to react with $C_x H_v$. Cavity pressure: 70-200mTorr.

M. Doleans et al. NIMA 812 (2016) 50-59

Plasma ignition in LCLS-II cavities

Glow discharge is ignited cell by cell, using cavity resonant modes.

New idea: ignite plasma using HOMs (Higher Order Modes): 1st and 2nd dipole pass-bands — good coupling at room temperature, resulting in plasma ignition with only few watts. Dual tone excitation to transfer plasma:

Studies on Contaminated Cavities

performance, FE may be not Crelated

• 2nd cavity: complete removal of FE after plasma processing

plasma ignited in the central cell (mode 2D-1) \longrightarrow transferred through adjacent cells using HOMs superposition.

transferring from cell #5 1st dipole mode 1D-3 pass-band

Simulated Vacuum failures

- Vented inside clean room: plasma processing completely removed FE ~
- Vented outside clean room: no or moderate increase in the performance
 - Collect particles introduced during the venting to understand contaminant composition

Conclusions

2nd dipole

pass-banc

- HOMs method: substantially reduces the forward power necessary to ignite plasma discharge
- Successfully removed $C_x H_v$ contamination and identified a first working recipe
- RF tests before and after plasma cleaning show:
 - Plasma processing preserves high Q and quench field of N-doped cavity
 - Plasma processing can remove field emission and increase quench field in cavities with various carbon-based

Removal Studies

Plasma

to cell #6

Cavity iris: contaminated with permanent marker (ink: C compound)

Initial State Developed a first recipe in terms of After 19 hours of plasma processing pressure, O_2 percentage, plasma density.

contaminations

Current and future work:

- Optimize plasma parameters (pressure, duration, O_2) percentage, plasma density) to increase efficiency
- Acquire more statistics on the effectiveness of plasma processing applied to natural field emission

This manuscript has been authored by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy, Office of Science, Office of High Energy Physics

Fermi National Accelerator Laboratory

