High Gradient Cryomodule Prototype for the International Linear Collider

Daniel Bafia, IIT

FERMILAB-POSTER-20-002-TD

Necessity of High Gradient/High Q₀ for ILC Realization

- The world is ready for a new Higgs factory for BSM physics
- ILC is a ready to go technology:
 - Uses SRF cavities; capable of very high Q₀ and gradients
- Largest cost driver is the average accelerating gradient of the main SRF LINAC

Damping

Unprecedented Performance in Single Cells with New High Gradient Surface Treatments

 Consistently achieve very high gradients with the FNAL developed 75C/120C modified bake surface treatment

• Increasing the baseline cavity specs allows for either:

Lower Cost

Higher Luminosity

Cost Estimation of 250GeV ILC LINAC

80%

FNAL Workshop on HL-HG ILC:

Proposed a high luminosity/high gradient ILC upgrade enabled
by recent progress made in High G/Q₀ R&D:

	TDR Base	eline $6 \times$ Luminosity upgrade, with $Q = 1 \times 10^{10}$	$6 \times$ Luminosity upgrade, with $Q = 2 \times 10^{10}$
Energy [GeV]	250	250	250
Luminosity [×10 ³⁴]	1.35	8.1	8.1
Total capital cost (no labor) [B ILCU]	5.5	8.0	7.73
Total AC power [MW]	132	286	267

Reproducibility of High Gradients at Other Labs

- Two 1.3 GHz single cell cavities processed at FNAL with the 75C/120C treatment were sent around the world for testing
- Very high gradients of +47 MV/m confirmed by other laboratories

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Cyomodules (including cavit Conventional Facilities, CF (
	Refrigeration system [B ILC
Incroacing	High power RF (linac only) [
increasing.	Damping ring [B ILCU]
$F = -31.5 \rightarrow 38 M/m$	Positron source [B ILCU]
Lacc,avg JIJ Z JOW V/III	Beam Dumps [B ILCU]
$0 \frac{1}{1} \frac{1}{10} \frac{10}{10} \frac{10}{10} \frac{10}{10}$	Other systems (not including
$Q_0 = 1 \times 10^{10} - 2 \times 10^{10}$	Tunnel length [km]
allowe for a 15%	Gradient [MV/m]
	Q
reduction in cost of	Repetition rate [Hz]
	Number of bunches
main SRF LINAC	Beam power [MW]
	Total RF pulse length [ms]

1.93 1.93 1.63 1.43 1.63 0.5 1.3 1.0 **BILCU** 1.2 0.33 0.66 0.23 0.69 0.21 0.070.21 CF) [B ILCU] 0.41 0.41 20 20 31.5 31.5 31.5 2×10^{10} 1×10^{10} 1×10^{10} 15 1,312 2.624 2,624 31.5 5.3 31.5 2.35 2.35 1.618

More info @: <u>arXiv:1910.01276</u>

Refurbishing a Cryomodule for High Gradient

- In the context of ILC cost reduction, FNAL plans to lead the assembly of a High Gradient Cryomodule (HGC)
- Partners at national and international institutions such as JLab, Cornell, KEK, CEA, DESY, and TRIUMF
- CM1 will be disassembled and upgraded with cavities processed using new techniques developed since the ILC

Material Science Studies to Uncover Mechanisms Responsible for Record High Gradients

- To better tailor surface treatments that further push the limits of record breaking performance, material science techniques are used to understand the microscopic mechanisms responsible for improved gradients and Q₀.
- 0.0 µm 2.0 4.0 6.0 7.0 0.0
- Cryo Atomic Force Microscopy (AFM) images

Technical Design Report

taken of **75C/120C** cavity cutouts show the growth and dissociation of nanohydrides

 Improved performance is linked to dissociation of these nano-hydrides

This manuscript has been authored by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy, Office of Science, Office of High Energy Physics

Fermi National Accelerator Laboratory

