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Abstract. The Deep Underground Neutrino Experiment (DUNE) will be a
world-class neutrino observatory and nucleon decay detector aiming to address
some of the most fundamental questions in particle physics. With a modu-
lar liquid argon time-projection chamber (LArTPC) of 40 kt fiducial mass, the
DUNE far detector will be able to reconstruct neutrino interactions with an un-
precedented resolution. With no triggering and no zero suppression or compres-
sion, the total raw data volume would be of order 145 EB/year. Consequently,
fast and affordable reconstruction methods are needed. Several state-of-the-
art methods are focused on machine learning (ML) approaches to identify the
signal within the raw data or to classify the neutrino interaction during the re-
construction. One of the main advantages of using those techniques is that they
will reduce the computational cost and time compared to classical strategies.
Our plan aims to go a bit further and test the implementation of those tech-
niques on an accelerator board. In this work, we present the accelerator board
used, a commercial off-the-shelf (COTS) hardware for fast deep learning (DL)
inference based on an FPGA, and the experimental results obtained outperform-
ing more traditional processing units. The FPGA-based approach is planned to
be eventually used for online reconstruction.

1 Introduction

The Deep Underground Neutrino Experiment (DUNE) will be an international neutrino ob-
servatory designed to answer fundamental questions about the nature of elementary particles
and their role in the universe [1]. The DUNE far detector (FD) will be located about 1.5 km
underground at the Sanford Underground Research Facility (SURF) in South Dakota, US, at a
distance of 1300 km from Fermilab where the world’s most intense neutrino beam will target
the FD. The FD will be composed of four liquid argon time-projection chambers (LArTPC)
each of them with a total fiducial mass of 10 kt. The liquid-argon technology allows us to
reconstruct neutrino interactions with image-like precision and unprecedented resolution.

2 The DUNE data challenge

The data acquisition (DAQ) system for the DUNE FD gathers beam-related interactions, as
well as cosmic-ray muons and atmospheric neutrino interactions; added together, recording
their activity will dominate the data rate. Before triggering, the data rate for each 10-kt
module is expected to be as much as 1.5 TB/s. The ultimate limit on the output data rate of
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the DAQ is set by the available permanent storage capacity; this limit is estimated to be about
30 PB/year. Extrapolating to four detector modules, this requires a DAQ data reduction factor
of almost four orders of magnitude. In order to meet these demands, new technologies will
need to be developed, including high throughput front-end electronics as well as additional
FPGA and CPU resources.

Deep learning (DL) techniques, such as deep neural networks (DNN) or convolutional
neural networks (CNN), have demonstrated to be extremely useful in particle physics experi-
ments [2–4], also in neutrino experiments [5, 6]. However, standard computing infrastructure,
i.e., CPUs, is usually not suitable for this ever-increasing technology, so other concrete solu-
tions are needed.

2.1 Machine learning on hardware accelerators

There is a growing demand for computing resources needed by modern machine learning
(ML) methods; consequently, hardware accelerators have entered in place. Nowadays, we
can find all kinds of accelerators, from general-purpose computing units, such as standard
GPUs [7], to specialized devices designed to speed up ML workloads [8].

The use of field-programmable gate arrays (FPGA) plays a crucial role in hardware ac-
celerators. Programming custom logics directly on the chip allows us to obtain maximum
performance from the hardware without needing to manufacturing an application-specific in-
tegrated circuit (ASIC). As a disadvantage, FPGAs are generally challenging to program, and
their capacity remains very limited, but this is changing in the last years [9].

The high-level synthesis (HLS) language introduces a more intuitive way for even non-
experts to program FPGAs in a C/C++ like code [10]. Some techniques allow to convert
neural networks to HLS in a quasi automated way [11]. The work that we present is an
efficient way to implement DNN, especially CNN, into FPGAs, avoiding the complex part of
hardware programming.

3 The Micron Deep Learning Accelerator technology

The Micron Deep Learning Accelerator (DLA) is a FPGA-based unit from Micron (SB852)
that has been designed for running neural networks with high efficiency, high speed, low
power consumption and low latency even with small batches. It has a Xilinx Virtex Ultra-
scale+ UV9P FPGA, 64 GB of DDR4, 2 GB of HMC memory, 2 QSFP transceiver connectors
and a PCIe x16 Gen3 interface. The FPGA contains a custom firmware that turns the FPGA
into a dedicated processor, with 2 clusters (cores) containing 1024 MAC units each. The
MACs are divided among various sub-units (matrix-matrix, matrix-vector and vector-vector)
with several parallel connections to internal maps (2MB/cluster) and kernel (512KB/cluster)
buffers and the memory interface for optimal access to memory. All operations are per-
formed on 16-bit fixed points values with intermediate results kept in a 32-bit accumulator.
This implies a reduction in precision compared to floating-point that has to be considered
when designing and deploying neural networks.

The DLA comes with a complete framework that allows quick deployment of existing
neural networks designed with common deep learning frameworks like Pytorch, TensorFlow,
Keras and others. The Micron SDK has a compiler that will compile networks exported to
ONNX (a common neural networks interchange format) into a binary code that the accelera-
tor can run. The compiled code will stay in the accelerator DDR4 memory, which is shared
between the FPGA and the host, so different networks can be quickly switched on the accel-
erator, without programming a newer firmware onto the FPGA. Examples are provided with
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both C and Python code and turning a CPU or GPU based code into a Micron accelerator
code takes just a few lines of code of modification.

4 The DUNE Convolutional Visual Network

The DUNE Convolutional Visual Network (CVN) [12, 13] is an algorithm for identifying
neutrino interactions based on their topology and without the need for detailed reconstruction
algorithms. In general terms, it is a CNN, inspired by the ResNet-18 architecture [14]. This
paper aims to demonstrate that we can implement the CVN on the Micron DLA. Similar
techniques have been demonstrated to outperform traditional reconstruction methods in high
energy physics [15].

The DUNE CVN takes 500x500x3 pixel images of the neutrino interactions as input.
These images are produced by concatenating three 500x500x1 pixel images - one from each
readout view of the DUNE LArTPCs (Figure 1) - along the third dimension (RGB channels).
The images contain the charge and the peak time of the reconstructed hits and do not use any
information beyond the hit reconstruction.

The primary goal of the DUNE CVN is to efficiently and accurately produce event selec-
tions of the neutrino interactions. We consider thirteen categories:

• For charged-current (CC) interactions, and for each of the neutrino flavors, CC νµ, CC νe

and CC ντ: CC quasi-elastic (CC QE), CC resonant (CC Res), CC deep inelastic (CC DIS)
and CC other.

• Neutral current (NC).

Once the DUNE CVN is trained, it returns scores for each event to be in the above thirteen
categories; the thirteen scores sum to 1, meaning that each value gives a fractional score that
can be used to classify images. However, during the analysis, we sum together the scores of
the four sub-categories for each neutrino flavor. This is done because the DUNE analysis is
focused on the CC νµ and CC νe selections.

DUNE Simulation

Figure 1: A simulated 2.2 GeV νe CC interaction shown in the collection view of the DUNE
LArTPCs. The horizontal axis shows the wire number of the readout plane and the vertical
axis shows time. The greyscale shows the charge of the energy deposits on the wires. The
interaction looks similar in the other two views. [13]

The DUNE CVN was trained using approximately 3 million neutrino interactions from a
Monte Carlo simulation that are independent of the sample that is used to generate the physics
measurement sensitivities. Since the DUNE analysis is focused on CC νµ and CC νe, the sam-
ple was chosen to ensure similar numbers of training samples from the two aforementioned
flavors.
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5 Benchmark

In this section, we will describe the benchmark ran consisting of three independent tests to
characterize the Micron DLA. Since the performance of the DUNE CVN is already known
and described in [12], we aimed to check whether we could have the same results using the
Micron DLA and obtain an increase of performance. For this purpose, we tested the DLA on
three different scenarios, using the DUNE CVN for all of them.

For the first test, we ran inference continuously over ∼2 million images, using the SB852.
Then we compared the results with the ground truth. Table 1 shows the classification report.
To fully understand the table, some metrics have to be defined. We define Ci, j as the number
of elements predicted as category i actually belonging to the category j with i, j = 1, 2, ..., n,
where n is the number of categories:
Precision: it measures the number of correctly classified items in a category over all items
predicted as this category.

Precision(i) =
Ci,i∑n
j=1 Ci, j

(1)

Recall: is the number of correctly predicted elements in a category over the number of actual
elements in the category.

Recall(i) =
Ci,i∑n
j=1 C j,i

(2)

F1-Score: it acts as a weighted average of precision and recall. The F1 score is limited
between 0 and 1, where 0 is the worst value, and 1 is the best.

F1 = 2 ·
Precision · Recall
Precision + Recall

(3)

Support: is the total number of elements,
∑

Ci, j ∀i, for each category, j.

The results presented in Table 1 are the expected results for the DUNE CVN [12], proving
that the NN performs correctly in the inference engine.

Table 1: Classification report for each of the 13 different categories.

Interaction Precision Recall F1-score Support

νµ CC QE 0.79 0.80 0.80 113213
νµ CC Res 0.59 0.67 0.62 157227
νµ CC DIS 0.70 0.77 0.73 203583
νµ CC other 0.71 0.24 0.36 54752
νe CC QE 0.78 0.79 0.79 110484
νe CC Res 0.61 0.70 0.65 154098
νe CC DIS 0.68 0.75 0.72 197268
νe CC other 0.59 0.43 0.50 54252
ντ CC QE 0.56 0.17 0.26 21447
ντ CC Res 0.42 0.06 0.10 23373
ντ CC DIS 0.50 0.29 0.37 46824
ντ CC other 0.49 0.05 0.09 10262
NC 0.91 0.94 0.92 773217

The set of Ci, j values can be illustrated as a matrix, where the predicted categories, i, cor-
respond to the rows and the actual labels, j, to the columns. This matrix is called “confusion
matrix” and helps to interpret the reported results. Figure 2 shows the confusion matrix for
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Figure 2: Confusion matrices for the classification task of the different neutrino interaction.
A confusion matrix shows the number of elements, Ci, j, predicted as category i, in rows,
belonging to the category j, in columns.

the classification report. The color scale of the matrix works the following way: the lightest
color represents cells with no classified events, while the darkest color represents cells with
more than 25k classified events. The elements in the main diagonal show the number of
correctly predicted samples.

The highest values tend to cluster around the same neutrino flavor, and that is intrinsic
to the neutrino interactions topology. It is easier to distinguish between neutrino flavors than
interactions; therefore, sometimes the network mixes the different interactions within the
same flavor. As mentioned in Section 4, the DUNE analysis is focused on the CC νµ and CC
νe selections. The Table 2 shows the classification report after summing together the scores
of the four sub-categories for each neutrino flavor. With an F1-score of 0.94 and 0.93 for CC
νµ and CC νe, respectively, this network maximizes the sensitivity of the experiment for the
neutrino classification analysis.

Table 2: Classification report for each neutrino flavor.

Interaction Precision Recall F1-score Support

CC νµ 0.93 0.95 0.94 528775
CC νe 0.89 0.96 0.93 516102
CC ντ 0.58 0.31 0.40 101906
NC 0.92 0.92 0.92 773217

For the second test, we reran the same network on a smaller dataset using 1,500 of ran-
domly chosen images. This time, we deployed it on a NVIDIA Tesla V100 GPU and on the
SB852 to compare their outputs. The goal is to check if there is any discrepancy due to the
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loss of precision due to the lack of floating-point arithmetic as mentioned in Section 3. Figure
3 shows the histogram of the absolute error for each of the outputs for all samples. With a
standard deviation of 0.0416 and a mean in the order of magnitude of 10−10, we can conclude
that the loss of precision is negligible on this test.
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Figure 3: Histogram for the absolute error between the GPU and the SB852 board. The error
is calculated as the difference in GPU and SB852 output for the 13 categories over a total of
1500 samples.

The aim of the third test carried out is to measure the performance of the SB852 compared
to a traditional processor unit. For this test, we used an Intel Core i7-8750H 8th Gen CPU
using the Keras framework with TensorFlow as backend. We enabled multithreading pools
in TensorFlow to get the maximum performance of the CPU. On the SB852 side, we used the
4th Gen DLA firmware with 512 MACs running at 250MHz. We ran the inference on a loop
of 145 samples and eliminated the first 20 iterations until we reached a steady state. Table 3
depicts the results. The average inference time in CPU is 264.85 ms. The SB852 is almost
2.6 times faster, with an average inference time of 103.61 ms.

Table 3: Inference time comparison between the Micron SB852 and in Intel CPU processor.

Processor Average time (ms) STD Min Max

SB852 103.6074 0.5505 102.4658 105.0381
CPU (i7-8750H) 264.8545 0.8653 262.1692 267.2548

6 Conclusion

In this work, we presented an efficient way to run a NN on FPGAs using the Micron DLA.
Due to the amount of data that DUNE will produce per year, approaches that allow decreasing
its volume are crucial for its smooth operation. We successfully implemented a NN conceived
to classify neutrino interactions into the Micron DLA SB852. We tested its behavior over ∼2
million images with a negligible error compared to its original implementation. Once we
characterized the DLA for neutrino physics applications, we plan to move to a more detector-
specific scenario, with extremely tight constraints where efficiency in data management and
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operation is critical. Machine learning techniques, such as DNN or CNN, can do the work,
but only if they can be deployed efficiently on hardware accelerators that can meet these
constraints.
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