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Abstract

z-Scaling of inclusive spectra as a manifestation of self-similarity and fractality of hadron
interactions is illustrated. The scaling for negative particle production in Au+Au collisions
from BES-I program at RHIC is demonstrated. The scaling variable z depends on the mo-
mentum fractions of the colliding objects carried by the interacting constituents, and on the
momentum fractions of the fragmenting objects in the scattered and recoil directions carried
by the inclusive particle and its counterpart, respectively. Structures of the colliding objects
and fragmentation processes in final state are expressed by fractal dimensions. Medium
produced in the collisions is described by a specific heat. The scaling function ψ(z) reveals
energy, angular, multiplicity, and flavor independence. It has a power behavior at high z
(high pT ). Based on the entropy principle and z-scaling, energy loss as a function of the
collision energy, centrality and transverse momentum of inclusive particle is estimated. New
conservation law including fractal dimensions is found. Quantization of fractal dimensions
is discussed.
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1 Introduction

The production of particles with high transverse momenta from the collisions of hadrons
and nuclei at sufficiently high energies has relevance to constituent interactions at small
scales. In this regime, it is interesting to search for new physical phenomena in elementary
processes such as quark compositeness [1, 2], extra dimensions [3]-[7], black holes [8]-[10],
fractal space-time [11]-[13], fundamental symmetries [14], etc. Other aspects of high energy
interactions are connected with small momenta of secondary particles and high multiplic-
ities. In this regime, collective phenomena of particle production take place. Search for
new physics in both regions is one of the main goals of investigations at the Relativistic
Heavy Ion Collider (RHIC) at BNL and the Large Hadron Collider (LHC) at CERN. Pro-
cesses with high transverse momenta of produced particles are most suitable for a precise
test of perturbative Quantum Chromodynamics (QCD). The soft regime is preferred for
verification of nonperturbative QCD and investigation of phase transitions in non-Abelian
theories. Basic principles which lie in the root of modern physical theories are the princi-
ples of relativity (special, general, scale), gauge invariance, locality, spontaneous symmetry
breaking and others. The fundamental property of asymptotic freedom and gauge invari-
ance were used for the development of QCD, the theory of strong interactions of quarks and
gluons. Due to asymptotic freedom, the perturbative QCD is controlled by higher-order
corrections in strong coupling constant. However, there is no universal method to be used in
the nonperturbative sector of QCD. This is a big challenge because even at large momentum
transfer, some nonperturbative aspects of the theory are still needed to make a comparison
with measured physical observables. Moreover, the internal structure of hadrons is not fully
understood and remains largely mysterious especially at small scales. In such situation, the
principles of self-similarity and fractality can give additional constrains for theories in par-
ticle physics. We consider that both mentioned principles reflect general features of hadron
interactions at high energies. They are important for verification of symmetries already
established, study of their possible violations, and search for new symmetries which govern
physical theories.

2 Scaling and universality as general concepts

The idea of self-similarity of hadron interactions is a fruitful concept to study collective
phenomena in hadron matter. Important manifestation of such a concept is existence of
scaling itself (see [15]-[17] and references therein). Scaling in general means self-similarity
at different scales. The physical content meant behind it can be of different origin. Some
of the scaling features constitute pillars of modern critical phenomena. Other category
of scaling laws (self-similarity in point explosion, laminar and turbulent fluid flow, super-
fluidity far from phase boundary and critical point, etc.) reflects features not related to
phase transitions.

The notions ”scaling” and ”universality” have special importance in critical phenomena.
The scaling means that the system near the critical point exhibiting self-similar properties
is invariant under transformation of a scale. According to universality, quite different sys-
tems behave in a remarkably similar way near the respective critical point. The universality
hypothesis reduces the great variety of critical phenomena to a small number of equiva-
lence classes, the so-called ”universality classes”, which depend only on few fundamental
parameters (critical exponents). The universality has its origin in the long range character
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of interactions (fluctuations and correlations). Close to the transition point, the behavior of
the cooperative phenomena becomes independent of the microscopic details of the considered
system. The fundamental parameters determining the universality class are the symmetry
of the order parameter and the dimensionality of space.

3 z-Scaling

The z-scaling belongs to the scaling laws with applications not limited to the regions near
a phase transition. The scaling regularity concerns hadron production in the high energy
proton (antiproton) and nucleus collisions (see [18]-[22] and references therein). It manifests
itself in the fact that the inclusive spectra of various types of particles are described with a
universal scaling function ψ(z). The function ψ(z) depends on a single variable z in a wide
range of the transverse momentum, registration angle, collision energy and centrality. The
scaling variable has the form

z = z0 · Ω−1. (1)

The quantity z0 =
√
s⊥/[(dNch/dη|0)cmN ] is proportional to the transverse kinetic energy√

s⊥ of a selected binary sub-process responsible for production of the inclusive particle with
mass ma and its partner (antiparticle) with mass mb. The multiplicity density dNch/dη|0 of
charged particles in the central interaction region, the nucleon mass mN , and the parameter
c, interpreted as a ”specific heat” of the produced medium, completely determine the value
of z0. The quantity Ω is the maximal relative number of configurations containing binary
sub-processes defined by the momentum fractions x1 and x2 of colliding hadrons (nuclei),
which carry interacting constituents, and by the momentum fractions ya and yb of objects
created directly in these sub-processes, which carries the inclusive particle and its antiparticle
counterpart, respectively. The relative number of the configurations is given by the function

Ω = (1− x1)
δ1(1− x2)

δ2(1− ya)
ǫa(1− yb)

ǫb , (2)

where δ1 and δ2 are fractal dimensions of the colliding objects, and ǫa and ǫb are fractal
dimensions of the fragmentation process in the scattered and recoil direction, respectively.
The selected binary interaction of the constituents used for calculation of the transverse
kinetic energy

√
s⊥ and z0, is defined by the maximum of Ω(x1, x2, ya, yb) with the kinematic

constraint
(x1P1 + x2P2 − p/ya)

2 = M2
X . (3)

The massMX = x1M1+x2M2+mb/yb of the recoil system in the sub-process is expressed via
momentum fractions and depends implicitly on 4-momenta of the colliding objects and the
inclusive particle, P1, P2 and p, respectively. The constraint (3) accounts for the locality of
hadron interaction at the constituent level and sets a restriction on the momentum fractions
via kinematics of the constituent sub-process. The function Ω−1 represents a resolution at
which a sub-process defined by the fractions x1, x2, ya, yb can be singled out of the inclusive
reaction. The scaling variable z has property of a fractal measure. It grows in a power-like
manner with the increasing resolution Ω−1.

The scaling function ψ(z) is expressed in terms of the experimentally measured inclusive
invariant cross section Ed3σ/dp3, the multiplicity density dN/dη and the total inelastic cross
section σin as follows [20]

ψ(z) =
π

(dN/dη) σin
J−1E

d3σ

dp3
. (4)

3



Here J is the Jacobian for the transformation from {p2T , y} to {z, η}. The Jacobian depends
on kinematic variables characterizing the inclusive reaction. The multiplicity density in the
expression (4) concerns particular hadrons species. The function ψ(z) is normalized to unity

∫
∞

0

ψ(z)dz = 1 (5)

and interpreted as a probability density to produce an inclusive particle with the corre-
sponding value of the self-similarity variable z. The flavor independence of z-presentation of
inclusive spectra means that the shape of the scaling function ψ(z) is the same for hadrons
with different flavor content over a wide range of z [19, 20]. The scale transformation

z → αF z, ψ → α−1
F ψ (6)

is used for the comparison of the shapes of the scaling function for different hadron species.
The scale parameter αF depends on type (F ) of the produced particles. The transformation
preserves the normalization (5) and does not destroy the energy, angular, and multiplicity
independence of the z-presentation of particle spectra.

3.1 Identified hadrons in p+ p collisions at RHIC

Let us remind the properties of z-presentation of experimental data already found in proton-
(anti)proton collisions at high energies. These are the energy, angular, and multiplicity
independence of scaling function ψ(z) for different types of hadrons, direct photons, and jets
confirmed by numerous data obtained at U70, ISR, Spp̄S, Tevatron, and RHIC. The energy
independence of the z-presentation of inclusive spectra means that the shape of the scaling
function is independent on the collision energy

√
s over a wide range of the transverse

momentum pT of produced inclusive particle. Some results on the energy independence
of the z-scaling for hadron production in proton-proton collisions were presented in [19].
The analyzed data include negative pions, kaons, and antiprotons measured at FNAL, ISR,
and RHIC energies. The spectra were measured over a wide transverse momentum range
pT = 0.1−10 GeV/c. The cross sections decrease from 102 to 10−10 mb/GeV2 in this range.
The strong dependence of the spectra on the collision energy

√
s increases with transverse

momentum.
Figure 1(a) shows the z-presentation of the spectra of π−,K−, p̄, and Λ′s produced in

p + p collisions over the range
√
s = 19 − 200 GeV and θcms = 30 − 900. The symbols

correspond to the data on differential cross sections measured in the central [24]-[33] and
fragmentation [23] regions, respectively. The analysis comprises the inclusive spectra of
particles [26, 27] measured up to very small transverse momenta (pT ≃ 45 MeV/c for
pions and pT ≃ 120 MeV/c for kaons or antiprotons). One can see that the distributions
of different hadrons are sufficiently well described by a single curve over a wide range of
z = 0.01 − 30. The scaling function ψ(z) changes more than ten orders of magnitude. The
solid lines represent the same curve shifted by multiplicative factors for reasons of clarity.
The same holds for the corresponding data shown with the different symbols.

The z-presentation of the transverse momentum distributions in proton-proton collisions
was obtained for δ1 = δ2 ≡ δ. We assume that main features of the fragmentation processes
in the scattered and recoil directions can be described by the same parameter ǫa = ǫb ≡ ǫF
which depends on type (F ) of the inclusive particle. The independence of the scaling function
ψ(z) on multiplicity and energy was found for the constant values of the parameters c = 0.25
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(a) (b)

Figure 1: The inclusive spectra of π−, K−, p̄, and Λ hadrons produced in p+p collisions

in z-presentation (a). Data are taken from [23]-[33]. The solid lines represent the same curve

shifted by multiplicative factors for reasons of clarity. The dependence of the fraction ya

on the transverse momentum pT (b) for π−,K−, and p̄ produced in the p+ p collisions at√
s = 19, 53, and 200 GeV in the central rapidity region.

and δ = 0.5. The angular independence of ψ(z) at small angles is sensitive to the values
of mb = m(π+), mb = m(K+), and mb = m(p), for the inclusive production of π−, K−,
and antiprotons, respectively. The parameter ǫF (ǫπ = 0.2, ǫK ≃ 0.3, ǫp̄ ≃ 0.35, ǫΛ ≃ 0.4)
increases with the the mass of the produced hadron. The indicated values of the parameters
are consistent with the energy, angular, and multiplicity independence of the z-presentation
of spectra for all types of the analyzed inclusive particles (π,K, p̄,Λ). The parameters were
found to be independent of kinematic variables (

√
s, pT , and θcms). The scale factors αF

are constants which allow us to describe the z-presentation of inclusive spectra for different
hadron species by a single curve. Based on the obtained results [19] we conclude that RHIC
data on p+p collisions confirm the flavor independence of the z-scaling including production
of particles with very small pT .

The method of construction of the scaling variable z fixes values of the corresponding
momentum fractions. The dependence of the fractions ya and yb on the kinematic variables
(pT , θcms,

√
s) describes features of the fragmentation processes. The fraction ya charac-

terizes dissipation of the energy and momentum of the object produced by the underlying
constituent interaction into the near side of the inclusive particle. This effectively includes
energy loss of the scattered secondary partons moving in the direction of the registered
particle as well as feed down processes from prompt resonances out of which the inclusive
particle may be created.

Figure 1(b) shows the dependence of the fraction ya on the transverse momentum pT
of π−,K−, p̄ particles produced in p + p collisions at the energy

√
s = 19, 53, 200 GeV and

θcms = 900. All curves demonstrate a non-linear monotonic growth with pT . It means that
the relative energy dissipation associated with the production of a high pT particle is smaller
than for the inclusive processes with lower transverse momenta. This feature is similar for
all inclusive reactions at all energies. The decrease of the fractions ya with the increasing
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collision energy is another property of the considered mechanism. It corresponds to more
energy dissipation at higher energies. This can be due to the larger energy losses and/or
due to the heavy prompt resonances. The third characteristic is a slight decrease of ya with
the mass of the inclusive particle. It implies more energy dissipation for creation of heavier
hadrons compared to hadrons with smaller masses.

3.2 Strangeness production in p + p collisions at RHIC

The strange particles represent a special interest as they contain strange quarks which are
the lightest quarks absent in the net amount in the initial state. At the same time, the
strange quarks created in the constituent sub-processes are substantially heavier than the
valence quarks in the colliding protons. The self-similarity of such interactions, expressed
by the same form of the scaling function, results in different properties of the constituent
collisions and fragmentation processes as compared to those which underlay the production
of the non-strange particles. The scaling behavior of ψ(z) for strange particles could give
more evidence in support of unique description of p + p interaction at a constituent level
and could provide a good basis for study of peculiarities of the strangeness production in
nuclear collisions, as well as for study of the origin of the strangeness itself.

The self-similarity of strange hadron production was studied [20] using data [37]-[39] on
inclusive cross-sections of K0

S ,K
−, K∗0, φ mesons measured in proton collisions at RHIC.

The data on strange particle spectra [24], [41]-[48] obtained by the BS, CCRS, CDHW, AFS,
NA61/SHINE, and NA49 Collaborations were used in the analysis as well.

Figure 2(a) shows z-presentation of the transverse momentum spectra [33]-[39] of strange
mesons and baryons measured in p + p collisions at the energy

√
s = 200 GeV in the cen-

tral rapidity region at RHIC. The symbols representing data on differential inclusive cross
sections include baryons which consist of one, two and three strange valence quarks. The
multiplicative factors 100, 10−1, and 10−2 are used to show the data z-presentation sepa-
rately for mesons, single-strange (Λ,Λ∗,Σ∗) and multi-strange (Ξ−,Ω) baryons, respectively.
The symbols for different particles are shown for the indicated values of the parameters ǫF
and αF . They are reasonably well described by the solid curve representing a reference
line (απ = 1) for π− mesons obtained from analysis [19] of pion spectra. It is consistent
with the energy, angular and multiplicity independence of the scaling function for differ-
ent hadrons. The fragmentation dimension ǫF for strange mesons is larger than for pions
(ǫπ = 0.20 ± 0.01). It suggests larger energy loss by production of mesons with strangeness
content. The fragmentation dimension for strange baryons grows with the number of the
strange valence quarks.

Figure 2(b) demonstrates the pT -dependence of the momentum fraction ya of strange
hadrons and π− mesons produced in p + p collisions at

√
s = 200 GeV. The fraction ya

increases with the transverse momentum for all particles. The energy loss ∆Eq/Eq = (1−ya)
depends on value of the fragmentation dimension ǫF . As one can see, the relative energy
loss decreases with the increasing pT for all particles. For a given pT > 1 GeV/c, the
energy loss is larger for strange baryons than for strange mesons. The growth indicates
increasing tendency with larger number of strange valence quarks inside the strange baryon,
(∆E/E)Ω > (∆E/E)Ξ− > (∆E/E)Λ ≃ (∆E/E)Λ∗ ≃ (∆E/E)Σ∗ .
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(a) (b)

Figure 2: Scaling function ψ(z) (a) and momentum fraction ya (b) for strange (K0

S
,K−,

K∗0, φ, Λ,Λ∗, Σ∗,Ξ−,Ω) hadrons produced in p + p collisions at
√
s = 200 GeV and

θcms ≃ 900. Experimental data are taken from [33]-[39]. The solid line in (a) is fit of ψ(z)

for π− mesons [40]. The points in (a) and (b) are calculated for δ = 0.5 and for the indicated

values of ǫF and αF .

3.3 Top-quark production at LHC and Tevatron

The top quark is the heaviest known elementary particle. It was discovered at the Tevatron
in 1995 by the CDF and DØ Collaborations [49, 50] at a mass of around 170 GeV. The first
measurements of the differential cross section as a function of the transverse momentum of
the top quark were presented by the DØ Collaboration [51]. It is expected that top physics
is extremely important in the search for new and for the study of known symmetries in
high-pT region.

Figure 3 shows the z-presentation [22] of the spectra of top-quark production obtained
in p + p collisions at the LHC energies

√
s = 7, 8, and 13 TeV in the central rapidity

region. The measurements of the inclusive cross sections were performed by the CMS [52]-
[55] and ATLAS [56]-[59] Collaborations in the dilepton and jet channels. The data include
measurements over a wide range of the transverse momentum 30 < pT < 1000 GeV/c. The
z-scaling of π−-meson spectra shown by the solid line serves as a reference curve. The values
of the fractal dimension δ = 0.5 and the parameter c = 0.25 are the same as used in our
previous analyses [19, 20] for other hadrons. We have set ǫtop = 0, as negligible energy
loss is assumed in the elementary tt̄ production process. The scale parameter αF in the
transformation (6) is found to be αtop ≃ 0.0045. The data on the top-quark production [60]
in p̄+ p collisions obtained by the DØ Collaboration at the Tevatron energy

√
s = 1.96 TeV

are compatible with the LHC data in z-presentation. The scaling function ψ(z) demonstrates
energy independence over a wide range of the self-similarity parameter z.

Based on the above comparison we conclude that the LHC and Tevatron data on inclusive
spectra of the top quark support the flavor independence of the scaling function ψ(z) over
the interval of z = 0.01 − 8. This result gives us indication on the self-similarity of top-
quark production in p+ p and p̄+ p interactions up to the top-quark transverse momentum
pT = 1 TeV/c and for a wide range of the collision energy

√
s = 1.96, 7, 8 and 13 TeV.
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Figure 3: The scaling function ψ(z) of the top-quark production in p+p and p+p̄ collisions

at the LHC energies
√
s = 7, 8, 13 TeV and at the Tevatron energy

√
s = 1.96 TeV. The

symbols denote the experimental data obtained by the CMS [52]-[55], ATLAS [56]-[59] and

DØ [60] Collaborations. The solid line is a reference curve corresponding to π−-meson

production in p+p collisions.

3.4 Jet production at LHC and Tevatron

Jets are traditionally considered as best probes of constituent interactions at high energies.
They are of interest both for study of jet properties itself and in search for new particles
identified by the jets. In hadron collisions, jet is a direct evidence of hard interaction
of hadron constituents (quarks and gluons). The data on inclusive cross sections of jet
production in p+ p collisions at the LHC energies

√
s = 2760, 7000, and 8000 GeV [61]-[66]

were analysed [22] in the framework of z-scaling. We used the parameter values c = 1, δ = 1,
ǫjet = 0, and ma = mb = 0 for the analysis. The results are compared with z-presentation
of jet spectra in p̄+ p collisions at the Tevatron energies

√
s = 630, 1800, 1960 GeV [67]-[78].

Figure 4(a) shows pT -dependence of jet spectra measured in the central pseudorapidity
window |η| < 0.5 by the ATLAS [61, 62, 63], CMS [64, 65], and ALICE [66] Collaborations
at the LHC and the spectra obtained in the mid-rapidity region by the DØ [67]-[72] and
CDF [73]-[78] Collaborations at the Tevatron. The data collected by the CMS Collaboration
at

√
s = 8000 GeV correspond to the integrated luminosity of 19.7 fb−1. The spectra were

measured up to the transverse momentum pT = 2500 GeV/c. The measurement based on
the data collected with the ATLAS detector at

√
s = 8000 GeV corresponds to an integrated

luminosity of 20.2 fb−1. The ATLAS data cover the range 70 < pT < 2500 GeV/c. The
distributions change by many orders of magnitude within the analyzed pT -range. As can
be seen from Fig. 4(a), the strong dependence of the spectra on the collision energy

√
s

increases with the transverse momentum.
Figure 4(b) demonstrates the energy independence of ψ(z) for jet production and its

power behavior over the range
√
s = 630−8000 GeV at η ≃ 0. The scaling function changes

more than twelve orders of magnitude and can be described by a power law ψ(z) ∼ z−β

over a wide z-range. The slope parameter β is energy independent in the large region of√
s. The dashed line corresponds to the asymptotic behavior of ψ(z). The data obtained at
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(a) (b)

Figure 4: The inclusive spectra of jet production in p + p and p̄ + p collisions in

pT (a) and z-presentation (b) measured at θ ≃ 900. The symbols denote the AT-

LAS [61, 62, 63], CMS [64, 65] and ALICE [66] data obtained in p + p collisions at√
s = 2760, 7000, 8000 GeV, and the DØ [67]-[72] and CDF [73]-[78] data obtained in p̄+ p

collisions at
√
s = 630, 1800, 1960 GeV.

the LHC confirm results of the analysis [79] of jet spectra measured by the DØ and CDF
Collaborations in p̄+ p collisions at the Tevatron with parameters δ = 1 and c = 1.

3.5 BES-I program in Au+ Au collisions at RHIC

Experimental results from RHIC and LHC support the hypothesis that a new state of
nuclear matter is created in the collisions of heavy ions at high energy. The created matter
with quark and gluon degrees of freedom, the Quark-Gluon Plasma, reveals features of a
strongly-coupled medium. It is assumed that the medium produced in heavy-ion collisions is
thermalized. The phase diagram of nuclear matter is usually presented in the temperature-
baryon chemical potential plane {T, µB}. Both quantities can be varied by changing the
energy and centrality of the nuclear collisions and the type and momentum of the produced
particles. The idea of the Beam Energy Scan (BES) program at RHIC is to scan the phase
diagram of nuclear matter from the top RHIC energy to the lowest possible energy achievable
on this collider and compare it with the phase diagram predicted by QCD theory [80, 81].
The program is aimed to perform systematic investigation and data analysis of particle
production in the heavy-ion interactions over a wide range of collision energy and centrality.
The systematic measurements performed with heavy-ions are of great interest to search for
critical phenomena in a broad range of kinematic variables.

We extend the applicability of the self-similarity principle to the description of hadron
production in nucleus-nucleus collisions. The self-similarity concerns fractal structure of
the colliding objects, interaction of their constituents and fractal character of fragmentation
processes in the final state. This physical principle is assumed to be valid also in the high-
density and high-temperature phase in which quark and gluon degrees of freedom dominate.

Figure 5(a) shows the scaling function ψ(z) for negative hadrons [21] produced in the
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(a) (b)

Figure 5: Scaling function ψ(z) (a) and the momentum fraction ya in dependence on the

transverse momentum pT (b) for negative hadrons produced in (0 − 5)% central Au + Au

collisions at
√
sNN = 7.7, 11.5, 19.6, 27, 39, 62.4 and 200 GeV [21]. The symbols correspond

to experimental data [82] measured by the STAR Collaboration at RHIC.

(0−5)% central Au+Au collisions at different energies
√
sNN = 7.7−200 GeV. The symbols

correspond to the spectra [82] measured by the STAR Collaboration in the pseudorapidity
window |η| < 0.5. The z-presentation of the spectra demonstrates energy independence of
the function ψ(z) over the analyzed kinematic range. Moreover, the symbols representing
the nuclear data are in reasonable agreement with the solid curve which depicts the z-scaling
of h− particles produced in p+ p collisions over the range

√
s = 11.5− 200 GeV. The same

energy independence of ψ(z) is valid [21] for different centrality classes of Au+Au collisions.
The scaling was obtained for the multiplicity dependent fragmentation dimension in the

form ǫAuAu = ǫ0(2dN
AuAu
neg /dη)+ǫpp with a suitable choice of ǫ0, and for the constant values of

the model parameters cAuAu = 0.11, δA = Aδ, δ = 0.5, and ǫpp = 0.2 at
√
sNN & 19.6 GeV.

The parameter ǫ0 shows logarithmic increase with
√
sNN [21]. It reflects growing tendency of

the suppression of hadron yields in the central collisions of heavy nuclei as the collision energy
and multiplicity increases. A decrease of the parameters δAu, δ, and ǫpp with energy for√
sNN < 19.6 GeV indicates smearing of the manifestations of fractality of the interacting

objects and fragmentation process at low energies.
The z-scaling of negative hadron production in Au + Au collisions was found in the

environment with different multiplicity densities. The multiplicity scan of particle yields
in nucleus-nucleus collisions at different energies gives complementary information on the
production mechanisms in nuclear medium. The scaling can be interpreted as a result of
a self-similar modification of elementary sub-processes by the created medium. We assume
that verification of the scaling behavior of ψ(z) at even higher (lower) z at high multiplicities
could give new restrictions on the model parameters. Based on the self-similarity arguments,
one can search for changes of the scaling parameters in the nuclear systems relative to ones
established in p + p interactions. A discontinuity or abrupt change of the structural (δA)
and fragmentation (ǫAA) fractal dimensions and the ”specific heat” (cAA) may indicate to a
signature of a phase transition or a critical point in the matter produced in nuclei collisions.
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Therefore quest for irregularities in the behavior of the z-scaling parameters is inspired by
searching of the location of a phase boundary and a critical point, which is of great interest.

The increase of ǫAuAu with multiplicity density is connected with a decrease of the
momentum fraction ya, representing larger energy loss in final state for large centralities
(multiplicities). The value of ya is a characteristic which describes relative energy dissipation
∆Eq/Eq = (1−ya) in the final state by production of an inclusive particle. The energy losses
depend on the traversed medium which converts them into the multiplicity of the produced
particles. This leads to the fact that the more produced multiplicity NAA

ch ≃ 2NAA
neg per

unit of (pseudo)rapidity, the larger energy loss of the secondary particles. The multiplicity
density characterizes the produced medium and is connected in this way to the energy loss
in this medium.

The amount of the relative energy loss, expressed by ya and its dependence on
√
sNN ,

multiplicity, and transverse momentum of produced particle, has relevance to the evolution
of the matter created in nuclei collisions. The energy and multiplicity characteristics of the
energy loss can be sensitive to the nature of the medium and can reflect changes in the
fragmentation process which may occur by production of inclusive particles. Figure 5(b)
shows the dependence of the fraction ya on the transverse momentum pT for h− hadrons
produced in the (0 − 5)% central Au + Au collisions for different energies. A monotonic
growth of ya with the momentum pT is found for all energies. This means that the relative
energy dissipation associated with the production of a high-pT particle is smaller than for
the inclusive process with lower transverse momenta. At given pT , the decrease of ya with√
sNN shows considerable growth of the relative energy loss, as the collision energy increases.

4 z-Scaling and entropy

The parameters used in the z-scaling scheme can be interpreted in terms of some thermo-
dynamic quantities (entropy, specific heat, chemical potential) of a multiple particle system.
There exists a profound connection between the variable z and entropy [18, 19]. The scaling
variable is proportional to the ratio

z ∼
√
s⊥
W

(7)

of the transverse kinetic energy
√
s⊥ and the maximal value of the function

W (x1, x2, ya, yb) = (dNch/dη|0)c · Ω(x1, x2, ya, yb) (8)

in the space of the momentum fractions, constrained by the condition (3). The function W
is proportional to the number of all parton and hadron configurations of the colliding system
which contain the constituent configuration defined by particular values of the momentum
fractions x1, x2, ya and yb.

According to statistical physics, entropy of a system is given by a number WS of its
statistical states as follows

S = lnWS. (9)

The most likely configuration of the system is given by the maximal value of S. For the
inclusive reactions, the quantity WS is the number of all parton and hadron configurations
in the initial and final state of the colliding system which can contribute to the production
of inclusive particle. The configurations comprise all constituent configurations that are mu-
tually connected by independent sub-processes. The binary sub-processes corresponding to
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the production of the inclusive particle with the 4-momentum p are subject to the condition
(3). The underlying sub-process, which defines the variable z, is singled out from these sub-
processes by the principle of maximal entropy S. The absolute number of the configurations,
WS = W ·W0, is given up to a multiplicative constant W0. Its value is restricted by the pos-
itiveness of entropy above some scale characterized by a maximal resolution (Ω−1)max. For
the infinite resolution at fractal limit, W0 is classically infinity. Denoting S0 = lnW0 and us-
ing relations (2), (8) and(9), we write the entropy of system of the considered configurations
as follows

S = c · ln(dNch/dη|0) + ln(1− x1)
δ1(1− x2)

δ2(1− ya)
ǫa(1− yb)

ǫb + S0. (10)

In thermodynamics, the entropy for an ideal gas is given by the formula

S = cV · lnT +R · lnV + S0. (11)

Here R is an universal constant. The specific heat cV , temperature T and volume V char-
acterize a state of the system.

There is an analogy between expressions (10) and (11). The analogy is supported by
the plausible idea that interactions of the extended objects like hadrons and nuclei can be
treated at sufficiently high energies as a set of independent collisions of their constituents.
Such concept justifies a division of the system into the part comprising a binary sub-process
which can contribute to production of the inclusive particle with 4-momentum p, and the
remaining part containing all other microscopic configurations which lead to the produced
multiplicity. Maximization of the entropy (10), constrained by the condition (3), corresponds
to the maximal entropy of the remaining part of the system. The multiplicity density of
particles produced in the central interaction region characterizes a ”temperature” created
in the system. Provided the system is in a local equilibrium, there exists a simple relation
dNch/dη|0 ∼ T 3 for high temperatures and small chemical potentials. Using the mentioned
analogy, the model parameter c plays a role of a ”specific heat” of the produced matter.
The second term in (10) depends on the volume of the rest of the system in the space of
the momentum fractions {x1, x2, ya, yb}. The volume is a product of the complements of the
fractions with exponents which are generally fractional numbers, V = lδ11 · lδ22 · lǫaa · lǫbb . This
analogy emphasizes once more the interpretation of the model parameters δ1, δ2, ǫa and ǫb
as fractal dimensions.

The entropy (10) increases with the multiplicity density dNch/dη|0 and decreases with the
increasing resolution Ω−1. The minimal resolution with respect to all binary sub-processes
satisfying the condition (3), which singles out the corresponding sub-process, is equivalent
to the principle of the maximal entropy S of the rest of the system.

4.1 Maximum entropy principle and conservation of fractal cumulativity

According to the assumption of fractal self-similarity of hadron structure and fragmentation
process and due to the locality of binary interactions of hadron constituents, there exists
a conservation law of a scale dependent quantity characterizing hadron interactions at a
constituent level. The quantification of such a statement is based on the maximum entropy
principle. The conservation law reflects a symmetry of transformation of one fractal structure
into another one at all scales. The corresponding symmetry is encoded in the functional form
of the fractions x1, x2, ya, yb which follows from the requirement of the maximal entropy (10).
The conditions for the maximization of the entropy with the constraint (3) determine specific
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dependences of the fractions on the kinematics of the inclusive reaction. As shown in [83],
the momentum fractions satisfy the following equality

δ1
x1

1− x1
+ δ2

x2
1− x2

= ǫa
ya

1− ya
+ ǫb

yb
1− yb

. (12)

This equation represents a conservation law for the quantity

C(D, ζ) = D · g(ζ), g(ζ) =
ζ

1− ζ
. (13)

The symbol D means a fractal dimension and ζ is the corresponding momentum fraction.
The conservation law (12) holds for any inclusive reaction with arbitrary momenta P1, P2 and
p of the colliding and inclusive particles which determine corresponding level of resolution.
We name the quantity C(D, ζ) as the ”fractal cumulativity” of a fractal-like structure with
the dimension D carried by its constituent with the momentum fraction ζ. The conservation
law for this quantity is formulated as follows:

The fractal cumulativity before a constituent interaction is equal to the fractal cumula-

tivity after the constituent interaction for any binary constituent sub-process,

in∑
i

C(Di, ζi) =

out∑
j

C(Dj , ζj). (14)

The quantity C(D, ζ) characterizes the property of a fractal-like object or a fractal-like
process with the dimension D to form a structural aggregate with certain degree of local
compactness, which carries its momentum fraction ζ. The value of the fractal cumulativity
is a measure of the ability of the fractal systems to create the aggregated sub-structures.
This cumulative feature of the internal structure of hadrons and nuclei is connected with
formation of hadron constituents interacting in the underlying sub-processes locally. It is in
agreement with the Heisenberg uncertainty principle. The aggregation property in the final
state concerns formation of the produced particles in the fractal-like fragmentation process.

The scale dependence of the conserved quantity C(D, ζ) is given by the function g(ζ).
Due to the general way of its derivation, the form of g(ζ) is the same for arbitrary fractal
objects (different hadrons, nuclei, hadron constituents, jets, guarks, gluons, etc.) participat-
ing in the high energy interactions. The dimension D is considered to be a new and unique
characteristic of the related fractal structures such as mass, charge and spin. The fractal
cumulativity corresponding to different momentum fractions satisfy the following relations

C(D, ζ”) = C(D, ζ) + C(D, ζ
′

) +D−1 · C(D, ζ) · C(D, ζ
′

), (15)

ζ” = ζ + ζ
′ − ζ · ζ ′

. (16)

This is a composition rule connecting the values of the cumulativity C(D, ζ) of the same
fractal structure at different levels of its aggregation.

We would like to note that (12) was derived by the formulae expressed in terms of the
Lorentz invariant quantities. It means that the conservation law for the fractal cumulativity
holds in any motion inertial frame in the unchanged form. The cumulativity C(D, ζ) is
therefore a relativistic invariant with respect to motion. The quantity manifests itself in
hadron interactions at a constituent level. Large values of the fractal cumulativity of the
interacting hadron structures can be obtained by increasing the resolution or compactness
of the system. The state of resolution revealed in measurements of the inclusive parti-
cles depends on fractal dimensions of the interacting objects and fractal dimensions of the
fragmentation processes in the final state.
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4.2 Entropy decomposition and quantization of fractal dimensions

The fractality of hadron structure and fragmentation process manifests itself most promi-
nently near the kinematic limit (x1, x2, ya, yb) → 1 of the inclusive reaction. The entropy
of the constituent configurations in this region bears information on fractal characteristics
of hadron interactions at small scales. In the vicinity of the kinematic limit (i.e. near the
fractal limit Ω−1 → ∞), the momentum dependent part

SΩ = δ1 ln (1−x1) + δ2 ln (1−x2) + εa ln (1−ya) + εb ln (1−yb) + lnΩ0 (17)

of the entropy (10) can be expressed in the form that admit physical interpretation of
quantization of the fractal dimensions δ1, δ2, εa and εb.

The maximization of SΩ constrained by condition (3) gives the asymptotic formulae [83]

1−x1 = h1(p)
δ1

δ+ ε
, 1−x2 = h2(p)

δ2
δ+ ε

, (18)

1−ya = ha(p)
εa

δ+ ε
, 1−yb = hb(p)

εb
δ+ ε

, (19)

valid near the kinematic boundary. The functions h1(p), h2(p), ha(p), hb(p) depend explicitly
on the momentum p of the inclusive particle, δ ≡ δ1 + δ2 and ǫ ≡ ǫa + ǫb. Using expressions
(18) and (19), the entropy (17) can be decomposed as follows

SΩ = SΥ − SΓ + lnΩ0. (20)

The first term, SΥ, describes the dependence of the entropy on the momenta and masses of
the colliding and inclusive particles, the second term,

SΓ = (δ + ǫ) ln(δ + ǫ)− δ1 ln δ1 − δ2 ln δ2 − ǫa ln ǫa − ǫb ln ǫb, (21)

depends solely on fractal dimensions, and the third one is a constant that guaranties nor-
malization. The formula (21) allows us to derive physical consequences provided that the
fractal dimensions are expressed as integer multiples of the same constant d,

δ1 = nδ1 · d, δ2 = nδ2 · d, ǫa = nǫa · d, ǫb = nǫb · d. (22)

In that case, the entropy SΓ can be interpreted within a statistical ensemble of fractal
configurations of the internal structures of the colliding hadrons (or nuclei) and fractal
configurations corresponding to the fragmentation processes in the final state. The statistical
ensemble is considered as a collection of nδ1 fractals with random configurations but with
the same fractal dimension δ1, together with an analogous set of nδ2 interacting fractals with
the fractal dimension δ2, which are combined via binary sub-processes with the collection
of nεa fractals with random configurations but with the same fractal dimension εa in the
final state, and the corresponding set of nεb fractals with the fractal dimension εb. For large
numbers of the configurations, SΓ can be rewritten as follows

SΓ = d · ln(Γδ1,δ2,ǫa,ǫb), (23)

where

Γδ1,δ2,ǫa,ǫb ≡
(nδ1 + nδ2 + nǫa + nǫb)!

nδ1 ! · nδ2 ! · nǫa! · nǫb!
= Γδ,ǫ · Γδ1,δ2 · Γǫa,ǫb (24)
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and

Γδ,ǫ =
(nδ + nǫ)!

nǫ! · nδ!
, Γδ1,δ2 =

(nδ1 + nδ2)!

nδ1 ! · nδ2 !
, Γǫa,ǫb =

(nǫa + nǫb)!

nǫa! · nǫb !
. (25)

According to statistical physics, the formulae (23) - (25) give us the possibility to interpret
the entropy SΓ, expressed in units of the dimensional quantum d, as the logarithm of the
number of different ways, Γδ1,δ2,ǫa,ǫb, in which the fractal dimensions of the interacting fractal
structures can be composed from the identical dimensional quanta, each of the size d. The
symbol Γδ,ǫ represents the number of ways how the overall number n = nδ + nǫ of the
dimensional quanta can be shared among nδ portions pertaining to the fractal dimensions
of the colliding objects and nǫ portions belonging to the fractal dimensions characterizing
fractal structures of the fragmentation processes. The symbols Γδ1,δ2 and Γǫa,ǫb represent
the numbers of ways in which the corresponding numbers nδ = nδ1 +nδ2 and nǫ = nǫa +nǫa

of the dimensional quanta can be distributed between the fractal dimensions of the single
fractals in the initial and final states, respectively.

The statistical interpretation of the entropy (21) is only possible under the quantization of
fractal dimensions (22), where d is an elementary dimensional quantum. The quantization is
a kind of ordering that diminishes the total entropy (SΓ enters with minus sign into Eq.(20)).

4.3 Conservation of the number of cumulativity quanta

The quantization of the fractal dimension, D = nD ·d, is connected with quantum character
of the fractal cumulativity C(D, ζ). Using expression (13), we can write this quantity in the
form

C = nC · d, nC(nD, ζ) = nD · ζ

1− ζ
, (26)

where nC(nD, ζ) represents the number of quanta of the fractal cumulativity expressed in
units of the dimensional quantum d. The quantum character of the fractal dimensions has
profound impact on the physical content of the conservation law for the fractal cumulativity.
According to (12), the number of the cumulativity quanta is conserved at any resolution given
by arbitrary momenta P1, P2 and p of the colliding and inclusive particles. The conservation
law can be formulated as follows:

The number of quanta of fractal cumulativity before a constituent interaction is equal to

the number of quanta of fractal cumulativity after the constituent interaction for any binary

sub-process,

in∑
i

nC(nDi
, ζi) =

out∑
j

nC(nDj
, ζj). (27)

The quantization of the dimension D and cumulativity C(D, ζ) is based on the assumptions
of the fractal self-similarity of internal hadron structure, fractal nature of fragmentation
process, and locality of hadron interactions at a constituent level up to the kinematic limit.

The conservation law for the quanta of the fractal cumulativity follows from general
physical principles. According to the Noether’s theorem, for every conservation law of a
continuous quantity there must be a continuous symmetry. In our case, the corresponding
symmetry is a scale-dependent translation symmetry which guaranties the conservation law
for the fractal cumulativity at any scale fixed by the minimal necessary level of resolution.
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5 Conclusions

In summary we conclude that z-scaling is a specific feature of high-pT particle production
established in p+ p and p̄+ p collisions at the U70, ISR, Spp̄S, Tevatron, RHIC and LHC.
It reflects the self-similarity, locality, and fractality of hadron interactions at a constituent
level. The scaling behavior was confirmed for inclusive production of different hadrons, jets,
heavy quarkonia and top quark. The hypothesis of the self-similarity and fractality was
tested in Au + Au collisions at RHIC using z-presentation of spectra of negative hadrons.
The analysis of the STAR BES-I data indicates energy and multiplicity independence of the
scaling function ψ(z). The variable z depends on the multiplicity density, ”heat capacity”,
and entropy of constituent configurations of the interacting system. The constituent energy
loss as a function of the energy and centrality of collisions and the transverse momentum of
inclusive particles was estimated.

We have shown that z-scaling, containing the principle of maximum entropy, includes a
conservation law of the ”fractal cumulativity” C(D, ζ). This quantity reflects the ability of
the fractal systems to create structural constituents with certain degree of local compactness.
The cumulativity of a fractal object or a fractal-like process with fractal dimension D carried
by its constituent with the momentum fraction ζ is proportional to the dimension D and
represents a simple function of ζ. It was shown that a composition rule for C(D, ζ) connects
the fractal cumulativity at different scales. The fractal dimension D is interpreted as a
quantity which has quantum nature. The quantization of fractal dimensions results in
preservation of the number of the cumulativity quanta nC(nD, ζ) in binary sub-processes at
any resolution.
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