

1Fermi National Accelerator Laborfatory, Batavia, IL, USA

High Energy Physics data analysis is an iterative process of distilling large amounts of data to extract physical
information and presenting it in a most optimal way. Typically, the physicist repeats the process of refining the
data filtering, data compilation and information representation many times, and reducing the time of individual
iteration reduces the time of the overall analysis process and allows the physicist to deliver the results sooner.

Currently, HEP data is stored in files and the analysis is essentially a repeating process of running the analysis
software over a large set of files. In order to reduce the iteration time, the physicists reduce the initial dataset (set
of files) to a smaller set by using 2 methods:
Skimming is a process of pre-filtering potentially interesting events so that there are fewer events to process
during each run.
Slimming is removing the elements of data structure which are not relevant for the particular analysis the
physicist is performing. Typical dataset used for analysis before slimming contains ~1000 columns, whereas
typical analysis uses only one or two dozens of these columns.
Once the dataset is reduced, the physicist can run their analysis code over smaller amounts of data in a more
efficient way, but data reduction contributes to the overall analysis process and slows it down. In addition,
because each physicist or group of physicists have their own way to reduce data, they all tend to replicate data
multiple times between all the reduced datasets they create over time.

What we are proposing is a fundamentally different way of storing data (see Fig. 1), which would support a
much more efficient and fast data analysis process. We propose to store analysis data in a database with efficient

© The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0
(http://creativecommons.org/licenses/by/4.0/).

EPJ Web of Conferences 245, 06042 (2020) https://doi.org/10.1051/epjconf/202024506042
CHEP 2019 FERMILAB-CONF-20-632-LDRD-SCD

and scalable access and largely eliminate the need to reduce and duplicate data by providing direct and
immediate access to the needed data and only to the needed data.

In addition, we propose to move from the event loop style of analysis to vector-based calculations, which, when
combined with functional and/or declarative algorithm representation, can be moved easily from CPU to GPU or
other SIMD processing platforms as the underlying computing fabric.

High Energy event data structures can be viewed as a recursive list of uniform tuples, some elements of which
can be lists of uniform tuples themselves. We developed a format of representing these kind of data structures,
based on a columnar approach, suitable to store data in a non-relational database or a BLOB storage. As in
columnar representations, the data is represented as a set of columns, each column is essentially a vector of
values for a single data attribute for the whole dataset (see Fig. 2). Then we cut columns into segments called
“stripes”. Each stripe contains data from a set of HEP events, typically for 1K to 10K or more events. All
columns are split along the same event boundaries. For example, if we have columns A and B, we split them in
such a way that if we have a stripe for column A with data for events ranging from 112000 to 112999, then there
will be a stripe for column B with data for exactly the same events 112000 to 112999 in the same order. These
event ranges are called Event Groups or Row Groups.

2

EPJ Web of Conferences 245, 06042 (2020) https://doi.org/10.1051/epjconf/202024506042
CHEP 2019

This format of data representation works very well with no-SQL, key-BLOB data storage systems. Each stripe is
stored as a BLOB, indexed by the combination of the dataset name, the column name and the row group number.
The BLOB contents is in fact a numpy[1] array immediately importable into numpy without any data conversion,
which makes the use of such storage very efficient.

Here are the advantages of this data representation for HEP data analysis:

3

EPJ Web of Conferences 245, 06042 (2020) https://doi.org/10.1051/epjconf/202024506042
CHEP 2019

We implemented a test instance of the striped storage system and a small analysis computing cluster at FNAL
(see Fig. 4)

4

EPJ Web of Conferences 245, 06042 (2020) https://doi.org/10.1051/epjconf/202024506042
CHEP 2019

Figure 4. Demo instance of the striped storage

The data storage part was implemented using 13 servers. Each data server was a 8-core computer with 0.9TB
data disk. We chose CouchBase[2] as the database software to store data. CouchBase is a rather simple,
distributed no-SQL database with memory cache. On top of the CouchBase cluster, we put 2 redundant web
servers and then a web cache computer with 20GB RAM-based cache. We used nginx[3] as the web server
engine.

We loaded about 2TB of CMS[4] dark matter search n-tuples data into the system.

The computing portion was implemented as a set of independent worker processes in Python, running on 2 16-
core computers, so we had 30 workers in total. The data was uniformly distributed among all available workers.
Each worker has its own data cache. The algorithm of data distribution among workers always sends the same
data to the same worker to make sure they can reuse their local cache. In total, we had 3 layers of RAM cache in
the system – the CouchBase own memory cache, web server cache and then the worker local cache.

The analysis platform is also Python based. Currently, it is written in Python 2.7. The user front end is
implemented as a iPython/Jupyter notebook with plotting using Matplotlib. The user notebook communicates
with the workers via TCP sockets, so the user notebook can run anywhere, as long as it can reach the workers.

On this our cluster, we managed to achieve the performance of about 1 million events per second using only 30
worker processes.

To demonstrate the flexibility of the system architecture, at some point, we created a Docker container with the
worker code, and ran the analysis successfully running the workers on the iMac desktop, the analysis 2-node
cluster described above and the AWS cloud. All the workers were accessing the data via cached web server
located at FNAL.

5

EPJ Web of Conferences 245, 06042 (2020) https://doi.org/10.1051/epjconf/202024506042
CHEP 2019

We have developed a format to represent HEP data in a way suitable to be stored in a non-relational database.
The data representation format and the database storage mechanism we developed allow to store and analyse
data in much more efficient way it is done currently, by eliminating the need to slim and duplicate data. Also
storing data in a database with scalable and efficient interfaces allow for scalable and massively parallel data
analysis, which largely eliminates the need to skim data. The architecture we propose is highly flexible and does
not require co-location of data and computing components. Wide use of Internet and web services technologies
allows to deploy the storage as well as the computational components on the cloud. In addition, it allows to have
the computing fabric to be distributed over WAN, heterogeneous and dynamic in terms of individual compute
node availability. This allows a science collaboration to build distributed computing and storage facilities and
have individual members of the collaboration flexibly contribute their resources to the collaboration.

The proposed computational model moves bulk of the computations from the event loop to the vector-based
paradigm, which allows to move to functional and/or declarative programming models, which, in turn, allow to
move computations easily from CPU to GPU and other SIMD platforms.

Utilization of data caching techniques significantly increases the efficiency of the analysis process, taking
advantage of the repeating nature of the HEP analysis process.

We built a demo HEP data analysis platform based on iPython/Jupyter as the user interface.

We were able to build a small 30 cores demo analysis cluster and test its performance on a real 2TB dataset from
CMS and achieved a performance of 1 million events per second with all the components written in Python

The proposed approach has a great potential of replacing existing file-based data analysis models and can
significantly increase the efficiency of the analysis process, reduce time to insight, add flexibility in building
storage and analysis facilities, and open new areas of HEP research, currently not possible due to a relatively
slow analysis process

6

EPJ Web of Conferences 245, 06042 (2020) https://doi.org/10.1051/epjconf/202024506042
CHEP 2019

