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Abstract. The DESGW group seeks to identify electromagnetic counterparts
of gravitational wave events seen by the LIGO-VIRGO network, such as those
expected from binary neutron star mergers or neutron star- black hole mergers.
DESGW was active throughout the first two LIGO observing seasons, following
up several binary black hole mergers and the first binary neutron star merger,
GW170817. We describe the modifications to the observing strategy generation
and image processing pipeline between the second (ending in August 2017)
and third (beginning in April 2019) LIGO observing seasons. The modifica-
tions include a more robust observing strategy generator, further parallelization
of the image reduction software and difference imaging processing pipeline,
data transfer streamlining, and a web page listing identified counterpart candi-
dates that updates in real time. Taken together, the additional parallelization
steps enable us to identify potential electromagnetic counterparts within fully
calibrated search images in less than one hour, compared to the 3-5 hours it
would typically take during the first two seasons. These performance improve-
ments are critical to the entire EM followup community, as rapid identification
(or rejection) of candidates enables detailed spectroscopic followup by multiple
instruments as soon as possible, leading to more information about the environ-
ment immediately following such gravitational wave events.

1 Introduction

The search for electromagnetic counterparts to gravitational wave (GW) events, such as those
expected from binary neutron star or neutron star-black merge mergers, touches a number
of topics in physics, including cosmology, the origin of heavy elements, and the neutron
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star equation of state. Dozens of groups around the world use a variery of instruments to
search for potential electromagnetic counters after receiving word of a GW event from the
LIGO/Virgo Collaboration (NVC). One such group is DESGW, consisting of members of the
Dark Energy Survey (DES), LIGO, and other members of the astronomical community, The
DESGW group, active since the first LIGO observing season (01) in 2015, employs the Dark
Energy Camera [1] to search for optical counterparts of GW events over multiple triggers in
each observing season thus far. Figure 1 presents an outline of the steps the DESGW group
takes from LIGO trigger to candidate announcement.

Our search and discovery pipeline [2] uses difference imaging to search for optical coun-
terparts of GW events. The pipeline is in turn based on the Dark Energy Survey’s single-
epoch [3] and supernova difference imaging [4] pipelines. Ref. [2] primarily focuses on
the details of the pipeline during the first two LIGO observing seasons (O1 and O2) from
2015-2017 and continues to form the backbone of the current pipeline. Here, we focus on
modifications made between O2 and O3 (beginning in April 2019) in the areas of bringing
additional parallelization to single-epoch processing, candidate identification, and public dis-
semination of candidates. These improvements aim to reduce the overall time from image
acquisition to candidate identification, improve the purity of candidate selection, and facili-
tate rapid dissemination of candidates to the community.

Figure 1. Overview of the DESGW gravitational wave followup program [2].

2 Single-epoch processing improvements

One of the main lessons learned during the O1 and O2 observing seasons was that there was
a clear need to reduce the total time from search image collection to public release of EM
counterpart candidate information. During real-time GW followup campaign it is important
to released vetted candidates as soon as possible in order to enable spectroscopic followup by
a variety of instruments around the world. During O1 and O2 our typical times to collect a
search image, process it, and apply all section criteria to any candidates was typically between
five and eight hours. During O3 our goal is to reduce this time to one hour. To meet this
goal we have refactored part of our pipeline to make several steps run in parallel that were
previously serial.

Our image processing pipeline begins with Single-Epoch (SE) processing on the raw
telescope image. This step applies calibrations and corrections such as crosstalk correction,
pixel correction, astrometric and photometric calibration, and object cataloguing. In earlier
versions of our pipeline there was a single grid job that performed SE processing on all
CCDs in entire search image. These jobs would typically take approximately one hour, but
sometimes up to between two and three hours for a single image, taking up a significant part



Figure 2. Diagram of the updated single-epoch processing pipeline. Green arrows indicate steps that
were previously performed on all CCDs simultaneously and are now fully parallel per CCD in the
updated O3 pipeline.

of the time from image acquisition to candidate identification (the difference imaging step
is typically 30-40 minutes per job). Furthermore no difference imaging could proceed until
SE processing was finished for all CCDs. In order to speed up this step we have refactored
the pipeline so that the SE step now runs in parallel on a CCD-by-CCD basis, as shown
in Figure 2. This arrangement enables a single job to perform both the SE and difference
imaging step for a given CCD in each search image, minimizing overhead times. As shown
in Figure 3, the time for the SE portion of the refactored pipeline is now typically under 15
minutes, with over 50% of the jobs completing in under 10 minutes. This represents roughly
a factor of 5 improvement over the old pipeline with no loss of fidelity. Additionally in this
approach CCDs that finish their SE processing faster no longer have to wait for "slow" CCDs
to finish and can proceed immediately into the difference imaging step. Our tests show that
the refactored pipeline does produce results within the one-hour time budget.

One drawback of the per-CCD SE processing approach is that it is more difficult to com-
pute the astrometric solution without having the entire focal plane available. It is still possible,
but it requires a denser astrometric catalog than the catalog used during the first two observ-
ing seasons. We now use the GAIA-DR2 catalog [5–7], enabling us to achieve sufficiently
accurate astrometric solutions in a single CCD to effectively run difference imaging.

3 Candidate identification improvements

To expedite the identification of potential GW counterparts in the DECam images, we have
designed and implemented a machine-learning-based photometric classification algorithm
called KN-Classify [8]. KN-Classify utilizes an “individualized training set approach,” in
which the training set is simulated immediately following observations and incorporates the
exact seeing, sky-brightness, exposure times, optical filters, and time-spacing of exposures
into the simulated photometric data used for training. Using models from the Photomet-
ric LSST Astronomical Time-Series Classification Challenge (PLAsTiCC) [9], we simulate
time-series photometric observations of of a variety of astrophysical sources as they would
appear in the DECam data using the SuperNova ANAlysis software suite (SNANA) [10]. The
optimal light curve features for kilonova detection are selected algorithmically. The classifier
itself is a Random Forest classifier [11] for which the number of estimators, maximum depth



Figure 3. Purple: Wall time for the SE stage of the updated parallel workflow for a single exposure.
There are 59 parallel jobs, one for each CCD used in the analysis. Yellow: wall time for SE processing
of the same exposure using the O1/O2 pipeline. In the O1/O2 pipeline there was one SE job per
exposure; we normalize it to 59 here for illustrative purposes. Since all 59 jobs are independent in the
O3 pipeline, the effective time for SE processing to complete is simply that of the longest single job,
providing an improvement factor of three to five depending on the individual exposure. The O3 pipeline
jobs also immediately move to the next stage of processing in each CCD, whereas in the O1/O2 pipeline
no diffimg jobs for a given exposure would start until all SE processing was complete.

of the constituent decision trees, class weights, and decision tree optimization criterion are
all chosen to optimize kilonova identification.
KN-Classify is a powerful classifier and the individualized training set approach makes

it robust against varying or poor observing conditions. In Figure 4, we display the per-
formance of KN-Classify for a follow-up with various combinations of seeing, moon-
illumination (a proxy for sky-brightness), and time between the LVC GW detection and the
start of DECam observations. As a metric, we show the fraction of the time a KN is placed as
one of the ten most probable candidates in the follow-up (out of ∼ 20, 000 candidates) since
we would anticipate being able to target ∼ 10 objects with spectroscopic instruments to ob-
tain an unambiguous characterization. This particular follow-up assumes DECam collected
only a total of four exposures (2 each in r, i with 1 hour between each r, i set) in each region
of interest in the sky. Thus, with only four photometric data points, KN-Classify is capable
of placing a true KN in the list of the ten most probable candidates more than 99% of the time
in arbitrary observing conditions.

We also match each candidate against a galaxy catalog. For O3, we have improved our
catalog by including coadd photometry with validated photometric z data from three different
algorothms. The new catalog also contains spectroscopic redshift information for a much
larger fraction of galaxies, which we constantly update as soon as new spectroscopic data
become available.

We have also added tools to automatically query the Transient Name Server to check for
detections of our counterpart candidates at other facilities prior to the GW event time. Such
detections indicate that the candidate is highly unlikely to be related to the GW event.

4 Web page design

We have redesigned our web pages for each followup campaign and individual candidate.
Figure 5 shows an example page listing all candidates for a given LVC trigger, including



Figure 4. Fraction of the time KN-Classify ranks a KN as one of the ten most interesting candidates
out of ∼ 20, 000 for various observing conditions. The observing cadence used for this plot was two
sets of exposures in r, i separated by 1 hour.

position, maximum ML score, and paths for accessing images. There is also a link for each
candidate’s dedicated page. Figure 6 shows an example of an individual candidate page.
These pages show each candidate’s complete record of observations including ML score,
flux, magnitude, and observing conditions, the image cutouts, and a light curve showing the
candidate’s evolution over time.

5 Conclusions

The DESGW group has made a number of improvements to its already-successful search
and discovery pipeline and deployed them during the third LIGO observing season. These
improvements include additional pipeline automation, refactoring to make the pipeline more
parallel, more accurate astrometric solutions, . Together, these improvements reduce the time
from image acquisition to candidate identification by a factor of approximately five with no
increase in the false positive rate.
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Figure 5. Example web page listing EM counterpart candidates for a given gravitational wave event.
One can sort the page based on position and maximum machine learning score. By clicking on a
candidate ID, one can view a more detailed candidate-specific page (see Fig. 6).

Figure 6. Example web page for a single EM counterpart candidate. The page provides a sky loca-
tion, the time, magnitude, and observing condition information for each observation of the candidate
(left panel). Also shown are image cutouts or "stamps" from the template, search, and difference im-
age for each observation (left panel). Continuing down the page (right panel), one finds the collected
observations presented together along with a light curve plot for the candidate.

Science, Office of High Energy Physics. The U.S. Government retains and the publisher, by accepting
the article for publication, acknowledges that the U.S. Government retains a non-exclusive, paid-up,
irrevocable, worldwide license to publish or reproduce the published form of this manuscript, or allow
others to do so, for U.S. Government purposes.



References

[1] B. Flaugher et al., Astron. J. 150, 150 (2015).
[2] K. Herner et al., arXiv:2001.06551 (2020).
[3] E. Morganson et al., Publ. Astron. Soc. Pac. 130, 074501 (2018).
[4] R. Kessler et al., Astron. J. 150, 172 (2015).
[5] T. Prusti et al., Astron. & Astrophys. 595, A1 (2016).
[6] A. G. A. Brown et al., Astron. & Astrophys. 616, A1 (2018).
[7] L. Lindegren et al., Astron. & Astrophys. 616, A2 (2018).
[8] R. Morgan et al., in preparation.
[9] T. Allam Jr et al., arXiv:1810.00001 (2018).
[10] R. Kessler et al., Publ. Astron. Soc. Pac. 121, 883 (2009).
[11] L. Breiman, Machine Learning. 45, 1 (2001).




