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Section 1

Introduction



Particle Accelerators and Storage Rings

Recycler Ring and the Muon Campus at Fermilab



Magnetic Dipole Moment (MDM)

In the classical model, the orbital MDM

of an electron arises from the electron

orbiting the nucleus. (Image source:

SJSU.)

The magnetic dipole moment
(MDM) µ is defined by the relation
τ = µ × B, where τ is the torque
exerted on an object, such as a
magnet, by an external magnetic
field B.

The spin MDM of a lepton (an elec-
tron e−, a muon µ−, or a tau τ−) is
µ = g e

2m s, where the lepton spin is
s = 1/2, m is the lepton mass, e is
the elementary charge, and g is the
g -factor (gyromagnetic ratio) of the
lepton.

The Dirac equation predicts the g -
factor as 2 for leptons, and the quan-
tity a = (g − 2) /2, arising from
quantum effects, is known as anoma-
lous MDM (or MDM anomaly).



Anomalous MDM Measurement

SP
Ss

The Muon g -2 Experiment at Fermilab measures anomalous MDM
using muons at the “magic” momentum 3.094 GeV/c, where spin
precession is proportional to the anomalous MDM.



Electric Dipole Moment (EDM)

An electric dipole with EDM p = qd. (Image source: Wikipedia.)

An electric dipole is a system characterized by centers of equal and
opposite total charges ±q separated by a distance d .
The electric dipole moment (EDM) of two point-like charges is
defined as p = qd .
EDMs of fundamental particles were not experimentally observed so
far.



Implications for the Standard Model (SM) and Beyond-BSM
Possibilities

Evolution of the universe (image source: Wikipedia).



The Frozen Spin (FS) Method

Sxz
P
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In the frozen spin concept for the measurement of deuteron
EDM, the spin and the momentum are horizontally aligned.
An non-zero EDM would result in spin precession in the
vertical plane.



Thomas–BMT Equation

The Thomas–BMT equation describes the dynamics of spin vector s in
magnetic field B and electrostatic field E , and it is generalized to account for
the EDM effects as follows:

ds

dt
= s × (ΩMDM + ΩEDM) ,

where the MDM and EDM angular frequencies ΩMDM and ΩEDM are

ΩMDM =
q

m

[
GB −

(
G − 1

γ2 − 1

)
E × β

c

]
,

ΩEDM =
q

m

η

2

[
E

c
+ β × B

]
,

where m, q, G are the particle mass, electric charge, and anomalous MDM,
respectively; β is the ratio of particle velocity to the speed of light; and γ is the
Lorentz factor. The EDM factor η is defined by d = η q

2mc
s, where d is the

particle EDM and s is the particle spin.
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Fringe Fields of Electrostatic Deflectors



Conformal Mapping Methods

A conformal mapping (or conformal map) is a transformation
f : C→ C that is locally angle preserving.
A conformal mapping satisfies Cauchy–Riemann equations and,
therefore, its real and imaginary parts satisfy Laplace’s equation:
∆< (f ) = 0 and ∆= (f ) = 0.
Conformal mappings automatically provide the electrostatic
potential in cases when the problem geometry can be represented by
a polygon, possibly with some vertices at the infinity.
The domain of a conformal mapping is called the canonical
domain, and the image of a conformal mapping is called the
physical domain.
A Schwarz–Christoffel (SC) mapping is a conformal mapping
from the upper half-plane as the canonical domain to the interior of
a polygon as the physical domain.



Example of a Schwartz-Christoffel Mapping

The Schwartz–Christoffel mapping f (z) =
√
z maps the upper half-plane to the upper-right quadrant of

the complex plane. (Image source: Kapania et al.)



Fringe Fields of Semi-Infinite Capacitors

SC Toolbox, inf. thin plate COULOMB, small rect. plate of D/4 thickness

SC Toolbox, rounded plate of D/20 thickness SC Toolbox, rounded plate of D/4 thickness

COULOMB, large rect. plate of D/4 thickness SC Toolbox, inf. thick plate
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Comparison of field falloffs of several semi-infinite capacitors
computed in the SC Toolbox with field falloffs of two finite
rectangular capacitors computed in COULOMB.



Fringe Fields of Two Adjacent Semi-Infinite Capacitors
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Additionally, we modeled fringe fields of two adjacent semi-infinite
capacitors with finitely thick plates and symmetric, antisymmetric,
and different voltages.



Accurate Fringe Fields Representation

We found that the field falloff of an electrostatic deflector is slower
than exponential.
Enge functions of the form FN (z) = 1

1+exp
(∑N

j=1 aj( z
D )j−1

) are not

suitable for accurate modeling of such falloffs.
We proposed an alternative function

H (z) =
1

1 + exp
[∑N1

j=1 aj
(
z
D

)j−1] 1

1 + exp
[(

z
D
− c
)2]+

+
1∑N2

j=1 bj
(
z
D

)j−1 1

1 + exp
[
−
(
z
D
− c
)2]

to model field falloffs of electrostatic deflectors.



Accurate Fringe Fields Representation
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A function of the form H (z) provides a good approximation of the fringe
field of an electrostatic deflector (right), in contrast to an Enge function
(left).
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Main and Fringe Fields of the Muon g -2
Collaboration Quadrupole



Main Field of the Muon g -2 Collaboration Quadrupole

The Muon g-2 collaboration quadrupole.

(Image source: Semertzidis et al.)

The Muon g-2 ring at Fermilab. (Image

source: FNAL.)

The main field of the Muon g -2 collaboration
quadrupole may be obtained using the following
general method:

1 Calculate the electrostatic potential us-
ing conformal mapping methods with
one plate – the left plate on the cross
section drawing – at 1 V and the other
Dirichlet boundary conditions (the re-
maining plates, the rectangular enclo-
sure, and the trolley rails) of 0 V.

2 Apply plate distance errors as perturba-
tions to four copies of the potential, each
copy corresponding to one plate at 1 V
and the other Dirichlet boundary condi-
tions of 0 V.

3 Apply appropriate rotations to these four
copies of the potential, scale the copies
(e.g., by ±2.4× 104 or with mispowered
values), and use their superposition.



Nominal Symmetric and Non-Symmetric Models

The plots on the left and right show the polygonal model of the
Muon g -2 collaboration quadrupole in the symmetric (SM) and
non-symmetric (NSM) cases, respectively.



Conformal Mapping Derivative

In both cases, the derivative of the conformal map f from the canonical
domain to the physical domain is

f ′ (z) = c cn (z |m) dn (z |m)
n∏

j=1

(sn (z |m)− sn (xj + iyj |m))αj−1 ,

where sn, cn, and dn are the Jacobi elliptic functions1, K is the complete
elliptic integral of the first kind2, the parameters n and α were obtained from
the polygonal model, and the parameters x , y , m, and c were found using the
SC Toolbox.

1Definitions of the Jacobi elliptic functions can be found at
http://mathworld.wolfram.com/JacobiEllipticFunctions.html.

2The complete elliptic integral of the first kind is defined at
http://mathworld.wolfram.com/
CompleteEllipticIntegraloftheFirstKind.html.

http://mathworld.wolfram.com/JacobiEllipticFunctions.html
http://mathworld.wolfram.com/CompleteEllipticIntegraloftheFirstKind.html
http://mathworld.wolfram.com/CompleteEllipticIntegraloftheFirstKind.html


Multipole Terms
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We obtained the multipole expansion of the electrostatic
potential in both SM and NSM cases to order 24 using the
differential algebra (DA) inverse of the conformal mapping, as
well as using Fourier analysis.
The use of conformal mapping methods for the calculation of
the main field has the advantage of an analytic, fully
Maxwellian formula and allows rapid recalculations with
adjustments to the geometry and mispowered plates.



Fringe Field of the Muon g -2 Collaboration Quadrupole

Falloffs of 2nd order Fourier modes

a2
(
rj
)
calculated at radii

r = 1.8, 2.1, 2.4, 2.7, 3.0 cm from Wu’s

field data. Curves with larger magnitudes

correspond to larger radii.

We obtained the quadrupole strength
falloff and the EFB zEFB = 1.2195cm
for the Muon g -2 collaboration
quadrupole by calculating Fourier
modes of its electrostatic potential at
a set of radii in the transversal plane.

The respective electrostatic po-
tential data was obtained using
COULOMB’s BEM field solver from
a 3D model of the quadrupole.

For a confirmatory comparison,
we applied the same method of
calculating multipole strengths to
the electrostatic field data obtained
for the Muon g -2 collaboration
quadrupole using Opera-3d’s finite
element method (FEM) field solver
by Wanwei Wu (FNAL).



Results Based on Soltner–Valetov and Wu Field Data

Some computational noise
is noticable here in Opera-3d.

The field falloffs and the EFBs obtained from Soltner–Valetov and
Wu field data are in good agreement, and they explained the
experimentally measured Muon g -2 ring tunes.
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Investigation of Spin Decoherence and
Systematic Errors in Frozen Spin and

Quasi-Frozen Spin Lattices



Quasi-Frozen Spin (QFS) Concept

The quasi-frozen spin (QFS) lattice concept is based on the FS
concept, but the requirement that spin needs to be aligned with
momentum is relaxed: in QFS, spin is aligned with momentum on
average during each turn.
The QFS condition to maintain an average alignment of spin with
momentum is θB + θE =0, where θB and θE are the polar rotation
angles of spin relative to momentum in the magnetic field and
electrostatic field, respectively.
This yields the QFS condition in terms of momentum rotation as

γGΦB + β2γ

(
1

γ2 − 1
− G

)
ΦE = 0. (1)



Quasi-Frozen Spin Lattices
Senichev 6.3 Lattice

Lattice parameters
Length: 166.67 m
Particles: deuterons

Kinetic energy: 270 MeV
4 straight sections (light gray)

4 magnetic sections (blue)

4 electrostatic sections (green)

System plot

Decoherence order suppression
RF cavity: 1st and, partially, 2nd order (by mixing the particles relatively to the
average field strength, averaging out 4γG for each particle).

Sextupoles: remaining 2nd order component, (which is due to the average of
4γG being different for each particle).



Quasi-Frozen Spin Lattices
Senichev E+B Lattice

Lattice parameters
Length: 149.21 m
Particles: deuterons

Kinetic energy: 270 MeV
2 straight sections (light gray)

4 magnetic sections (blue)

2 E+B sections (orange)

System plot

Decoherence order suppression
RF cavity: 1st and, partially, 2nd order

Sextupoles: remaining 2nd order component

The E+B static Wien Filter elements are used instead of the electrostatic deflector (1)
to remove nonlinear components due to curved electrostatic element and (2) to
simplify the system from the engineering perspective.



Frozen Spin Lattice
Senichev BNL Lattice

Lattice parameters
Length: 145.85 m
Particles: deuterons

Kinetic energy: 270 MeV
2 straight sections (light gray)

2 curved E+B sections (light blue)

System plot

Decoherence order suppression
RF cavity: 1st and partially 2nd order

Sextupoles: remaining 2nd order component

The design of this lattice is based on the FS method and uses a curved E+B element
as proposed by the Storage Ring Electric Dipole Moment Collaboration.



Optimization of Sextupole Strengths

Objective function OBJ as a function of sextupole family strengths
in the Senichev 6.3 QFS lattice. Tracking was performed with the
RF cavity on, particles launched with horizontal offsets up to
xi = ±5× 10−3 m, and fringe field mode FR 3.



Spin Decoherence with Optimized Sextupole Strengths

With an optimized sextupole family strength, the spin
decoherence often remains in the same range for at least
4.2× 105 turns.
The QFS structure decoherence is qualitatively and
quantitatively similar to that of a FS structure decoherence.



Systematic Errors due to Magnet Rotational Misalignments

The rotational magnet misalignments, Bx and Bz error field components.

We studied the effect of rotational magnet misalignments on spin
dynamics, namely spin decoherence and frequencies of rotation in a
vertical plane, in QFS and FS structures. The error field
components Bx and Bz are the most relevant to the detection of an
EDM signal.



Mitigation of Bx and Bz Error Components

Clockwise (CW) and counterclockwise (CCW) lattice traversal
We proposed to track polarized particle bunches in the QFS/FS lattices in both
CW and CCW directions.

We consider the CW direction to be forward and the CCW direction to be
reverse.

We use the fact that in the linear approximation the reverse spin transfer map
coincides with the inverse spin transfer map.

Bx error field component
Rotation frequencies are ΩCW

x = ΩCW
Bx

+ ΩEDM and
ΩCCW

x = −ΩCCW
Bx

+ ΩEDM in the vertical plane and Ωy = 0 + 〈δΩdecoh〉 in the
horizontal plane.

It is necessary to (1) minimize the decoherence in the vertical plane σ (ΩBx ) the
same way as in the horizontal plane using the RF cavity and sextupole families
and (2) minimize

∣∣∣ΩCW
Bx
− ΩCCW

Bx

∣∣∣.
Rotation frequency due to EDM is obtained by
ΩEDM =

(
ΩCW

x + ΩCCW
x

)
/2 +

(
ΩCCW

Bx
− ΩCW

Bx

)
/2.



Mitigation of Bx and Bz Error Components

Bz error field component
The method of error field component mitigation for Bx is not
applicable to Bz .
We have to minimize ΩBz to ∼ 10−10 rad

s using additional trim coils.

Outcome of the Bx and Bz error component mitigation method
For the error component mitigation method outlined here, we obtained a
measurement accuracy estimate of ΩEDM is ∼ 10−9 rad

s .

As a result, the accuracy of EDM signal measurement in one run is
∼ 10−28 e · cm.

The accuracy of the EDM signal measurement after one year of
measurement may be ∼ 10−30 e · cm.



Vertical Spin Decoherence, Exact QFS/FS

Our systematic errors study shows that, for at least 4.2× 105 turns,
the vertical spin decoherence due to rotational magnet
misalignments often remained in the same range (or grew within
the range of the spin decoherence curve for tracking in the opposite
direction) in both FS (Senichev BNL) and QFS (Senichev E+B)
lattices.



Section 5

End-to-End Beamline Simulations for the Muon
g -2 Experiment and Systematic Analyses



End-to-End Beamline Simulations

Using high-performance computing resources and simulation codes
G4Beamline and BMAD, we performed end-to-end beamline
simulations for the Muon g-2 Experiment with 3× 1012

protons-on-target.



MARS Model of the Target Station

We revised the MARS model of the Muon g -2 target station AP0
from its 2011 version. MARS is a Monte Carlo code often used for
target station and detector simulations.



Muon Losses Study

We continued the end-to-end beamline simulations for 2000 turns
around the Muon g -2 storage ring, and studied the
momentum-dependent muon losses, which cause a systematic shift
of the measured anomalous MDM.
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