FERMILAB-SLIDES-19-087-E

Alignment of the Mu2e Experiment

Jana Barker **IWAA 2018** 10 October 2018

In partnership with:

This document was prepared by Mu2e collaboration using the resources of the Fermi National Accelerator Laboratory (Fermilab), a U.S. Department of Energy, Office of Science, HEP User Facility. Fermilab is managed by Fermi Research Alliance, LLC (FRA), acting under Contract No. DE-AC02-07CH11359.

Mu2e (Muon to Electron Conversion) Experiment

- Make muons at the production target
- Collect and transport them to the stopping target
- Search for muon to electron decay without neutrinos

😤 Fermilab

Mu2e Alignment Challenges

- "Guess" of the target final position based on the Solenoid QC
- After initial alignment, solenoids will be welded to steel pads imbedded in reinforced concrete slab floor.
- Measuring energized magnets (magnet field mapping...)
 - Need nonmagnetic equipment: ceramic SMRs, nonmagnetic nests, so usage limitations
 - SMRs have to be held by gravity (disadvantages in high traffic areas) or glued on (the equipment has to be carefully and completely cleaned for later reliable use)
 - Measurement crew in magnetic field
- Measurement instruments must endure magnetic fields
- Iterative alignment of the Detector Train

Mu2e Reference Network

- The building was handed over in Jan. 2017
- Reference network was designed and simulated using SA and GeoPAN
 - using an "Exclude Obscured Points and Fabricate Measurements with Lines" MP [3]
 - measured with a AT401 LT, a DNA03 Leveling instrument, and a DMT Gyromat 2000 Gyrotheodolite
- To follow the Earth curvature, the Ellipsoidal height was held on measured points during the Least Square Adjustment of the terrestrial observations QuantityQuantity $Direction \sigma_{\varphi}$ 0. Zenith angle σ_{z} 0.

Slope distance808Directions806Zenith Angles771Total2385	Number of observations				
Directions 806 Zenith Angles 771 Total 2385	Slope distance	808			
Zenith Angles 771 Total 2385	Directions	806			
Total 2385	Zenith Angles	771			
2000	Total	2385			

Number of unknowns					
Orientations	33				
Coordinates	692				
Total	725				
Degrees of freedom	1660				

Quantity	Apriori	Aposteriori			
Direction σ_{φ}	0.300 mgon (1'')	$0.287 \mathrm{mgon} (0.958'')$			
Zenith angle σ_z	0.300 mgon (1'')	$0.607 \mathrm{mgon} (2.024'')$			
Distance σ_d	$2\mathrm{ppm}$	$2.36\mathrm{ppm}$			

Mu2e Reference Network

Heavy Assembly Building Reference Network

Testing of the Leica AT403 in Magnetic Field

- No long-term effect or damage caused by 500 Gauss field
- That field causes problems with aiming at the targets => longer measurement time but possible

 After leaving 500 Gauss field, instrument came back to

normal accuracy

Best-Fit Transformation (30_Gauss - 500_Gauss_1) (Details)											
Leica AT 403::500_Gauss_1 to Leica AT 403::30_Gauss											
				10/24/2	017 2:35	:51 PM					
Name	On	Nom X	Nom Y	Nom Z	Wt X	WtY	Wt Z	dX	dY	dZ	dMag
TP1	X	4341.0019	817.9182	-372.6448	1.000	1.000	1.000	0.0754	-0.1467	-0.0041	0.1650
TP3	X	4355.5871	-2823.0821	-377.2413	1.000	1.000	1.000	-0.0777	-0.0241	0.0114	0.0821
TP4	X	3411.3308	-2804.1966	-1201.8453	1.000	1.000	1.000	-0.0575	0.0174	0.0176	0.0626
TP5	X	-4589.7051	117.6239	-374.8057	1.000	1.000	1.000	-0.0351	0.0539	-0.0142	0.0659
TP6	X	-3644.9923	111.1576	-1195.2581	1.000	1.000	1.000	-0.0618	0.0242	-0.0078	0.0668
TP7	X	-4547.6548	-4260.2160	-369.7543	1.000	1.000	1.000	-0.0053	0.0002	-0.0154	0.0163
TP8	X	-3604.2259	-4241.7972	-1196.5774	1.000	1.000	1.000	-0.0220	-0.0123	0.0375	0.0452
TP9	Х	-2520.6798	-6232.1800	-375.2802	1.000	1.000	1.000	0.1035	-0.0366	-0.0111	0.1104
TP10	X	2287.9707	-6221.1918	-376.9193	1.000	1.000	1.000	0.0804	0.1239	-0.0140	0.1484

🛟 Fermilab

Field Mapping System – Vibration Analysis

- Motivation:
 - Needs precise 3D magnetic field mapping to model charged particle trajectories
- Field Mapping System (FMS) maps the magnetic field of the solenoids.
 - Discrete translation on rails and discrete rotation of the propellers
 - Need to precisely know the location of the location of the magnetic field sensors
- Rigid mechanical coupling of the FMS needed to be proved
- Measured with three API LTs and used SA FMS Assembly
 Image credit: DFSM Design Group, ANL

FMS – Synchronized Data

Close-up of the vibrations of the system in X and Y axes (right-left and up-down) – third set of measurements

FMS – FFT

FMS – Calibration Magnet

- Hall probes (magnetic sensors) need calibration in known field
- Magnet is mapped mechanically and compared to magnetic measurements (NMR probes)
- Magnet poles will be mapped using interferometer measurements (LT in IFM mode), used to find bisecting plane

FMS – EMMA

- Complex Field Mapping System's software includes LT interface and calculations
- Cooperating with a software developing team on the correct approach, calculations, and interpretation of gathered data

Cold Mass Positioning System

- Communicates the Cold Mass position to the outside of the cryogenic vessel
- Three interferometric lasers

 on the flange monitor the position of the piston disc connected to the piston nest position on the Cold Mass
- Main metrology challenge is referencing the lasers to the fiducials

Transport Solenoid Test Unit 01

- TSUN01 is unit consisting of 2 solenoid coils
- It's the center part of TSU (The TS is made up of the TSU and TSD)

‡ Fermilab

Transport Solenoid Test Unit 01 Measurements

- Quality Control and Referencing measurements were performed
- Mechanical and magnetic axes were measured and compared to the original CAD model
- Measurements are fitted to a CAD model which uses the Mu2e coordinate system
- Results, such as the magnetic axis, are the used to recalculate the final position within the experiment

🛟 Fermilab

Production Target Measurements

- Developed new fiducial type: fitting into an 80/20 groove
- Production Target held by 6
 spring loaded spokes
- Measured adjustability
- Repeatability of placing tested

https://youtu.be/SCI_jyeUels

Acknowledgement

I would like to thank my coworkers for their expertise and everyday help and support, particularly:

Charles Wilson, Craig Bradford, Doug Swanson, Mike O'Boyle, Gary Teafoe, Mike Smego, Randy Wyatt, Ed Dijak, Gary Coppola, John Kyle and Gary Crutcher.

I would also like to thank to my co-author and husband Anthony Barker for translating all my papers, presentations and posters from Czenglish to English (and not just that).

This manuscript has been authored by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy, Office of Science, Office of High Energy Physics.

Fermilab **Office of** Science

Thank you for your attention

Jana Barker

Fermi National Laboratory jana@fnal.gov, X3098

References

- [1] Hejdukova, Jana B: *High-accuracy local positioning network for the alignment of the Mu2e experiment*. United States. doi:10.2172/1371769.
- [2] Barker, Jana B. et al: *Multiple Laser Tracker synchronization for the Vibration Analysis.* Journal of the CMSC. Vol 13, No. 2 Autumn 2018. United States.
- [3] New River Kinematics: Spatial Analyzer, Downloads: Measurement Plans [online: 3/2017]. https://www.kinematics.com/

[4] Feher, Sandor, et al.: Field Mapping System – 2018 DOE IPR - internal document Mu2e DocDB 20733

- [5] Feher, Sandor, et al.: CMPS introduction internal document Mu2e DocDB 8713
- [6] Feher, Sandor, Thomas Strauss and Tom Nicol: Mu2e Cold Mass Position Monitoring System CMPS [2016] – internal document Mu2e DocDB 8618
- [7] Barker, Jana B.: Transport Solenoid Unit 01 Quality Check and SSW measurements internal document Mu2e DocDB 18009
- [8]

