Alignment of the Mu2e Experiment

Jana Barker
IWAA 2018
10 October 2018
Mu2e (Muon to Electron Conversion) Experiment

- Make muons at the production target
- Collect and transport them to the stopping target
- Search for muon to electron decay without neutrinos
Mu2e Alignment Challenges

• “Guess” of the target final position based on the Solenoid QC
• After initial alignment, solenoids will be welded to steel pads imbedded in reinforced concrete slab floor.
• Measuring energized magnets (magnet field mapping…)
 – Need nonmagnetic equipment: ceramic SMRs, nonmagnetic nests, so usage limitations
 – SMRs have to be held by gravity (disadvantages in high traffic areas) or glued on (the equipment has to be carefully and completely cleaned for later reliable use)
 – Measurement crew in magnetic field
• Measurement instruments must endure magnetic fields
• Iterative alignment of the Detector Train
Mu2e Reference Network

• The building was handed over in Jan. 2017
• Reference network was designed and simulated using SA and GeoPAN
 – using an “Exclude Obscured Points and Fabricate Measurements with Lines” MP [3]
 – measured with a AT401 LT, a DNA03 Leveling instrument, and a DMT Gyromat 2000 Gyrotheodolite
• To follow the Earth curvature, the Ellipsoidal height was held on measured points during the Least Square Adjustment of the terrestrial observations
Heavy Assembly Building Reference Network

- Used for precision assembly of the transport solenoid
Testing of the Leica AT403 in Magnetic Field

- No long-term effect or damage caused by 500 Gauss field
- That field causes problems with aiming at the targets => longer measurement time but possible
- After leaving 500 Gauss field, instrument came back to normal accuracy
Field Mapping System – Vibration Analysis

- Motivation:
 - Needs precise 3D magnetic field mapping to model charged particle trajectories
- Field Mapping System (FMS) maps the magnetic field of the solenoids.
 - Discrete translation on rails and discrete rotation of the propellers
 - Need to precisely know the location of the location of the magnetic field sensors
- Rigid mechanical coupling of the FMS needed to be proved
- Measured with three API LTs and used SA with UDP
Data processing in Python

Start: Text data files in

Same Sampling Frequency?

Yes

Find course offset: Min χ^2 from shifting by discreet number of samples

No

Interpolate finer data stream to match sampling frequency

Find fine offset: Min χ^2 from shifting (-1,1) sampling periods, Between-sample interpolation

Done, Δt found to 0.1 to 0.5 sampling periods
Close-up of the vibrations of the system in X and Y axes (right-left and up-down) – third set of measurements
• Fast Fourier Transform was performed for identification of the vibration sources
FMS – Calibration Magnet

- Hall probes (magnetic sensors) need calibration in known field
- Magnet is mapped mechanically and compared to magnetic measurements (NMR probes)
- Magnet poles will be mapped using interferometer measurements (LT in IFM mode), used to find bisecting plane
FMS – EMMA

- Complex Field Mapping System’s software includes LT interface and calculations
- Cooperating with a software developing team on the correct approach, calculations, and interpretation of gathered data
Cold Mass Positioning System

• Communicates the Cold Mass position to the outside of the cryogenic vessel
• Three interferometric lasers on the flange monitor the position of the piston disc connected to the piston nest position on the Cold Mass
• Main metrology challenge is referencing the lasers to the fiducials
Transport Solenoid Test Unit 01

- TSUN01 is a unit consisting of 2 solenoid coils
- It’s the center part of TSU (The TS is made up of the TSU and TSD)
Transport Solenoid Test Unit 01 Measurements

- Quality Control and Referencing measurements were performed
- Mechanical and magnetic axes were measured and compared to the original CAD model
- Measurements are fitted to a CAD model which uses the Mu2e coordinate system
- Results, such as the magnetic axis, are used to recalculate the final position within the experiment
Production Target Measurements

- Developed new fiducial type: fitting into an 80/20 groove
- Production Target held by 6 spring loaded spokes
- Measured adjustability
- Repeatability of placing tested

https://youtu.be/SCI_jyeUels
Acknowledgement

I would like to thank my coworkers for their expertise and everyday help and support, particularly:

Charles Wilson, Craig Bradford, Doug Swanson, Mike O'Boyle, Gary Teafoe, Mike Smego, Randy Wyatt, Ed Dijak, Gary Coppola, John Kyle and Gary Crutcher.

I would also like to thank to my co-author and husband Anthony Barker for translating all my papers, presentations and posters from Czenglish to English (and not just that).

This manuscript has been authored by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy, Office of Science, Office of High Energy Physics.
Thank you for your attention

Jana Barker

Fermi National Laboratory
jana@fnal.gov, X3098
References

[8]