FERMILAB-SLIDES-19-085-E

The Mu2e Experiment: A Search for Charged Lepton Flavor Violation

Dan Ambrose

University of Minnesota

Lake Louise Winter Institute 2019

This document was prepared by using the resources of the Fermi National Accelerator Laboratory (Fermilab), a U.S. Department of Energy, Office of Science, HEP User Facility. Fermilab is managed by Fermi Research Alliance, LLC (FRA), acting under Contract No. DE-AC02-07CH11359.

Feb 16, 2019

Charged Lepton Flavor Violation (CLFV)

Any observation of CLFV must be new physics!

Searching for CLFV

CLFV Searches History

Currents experimental limits: MEG: $\mathcal{B}(\mu \to e\gamma) < 5.7 \times 10^{-13}$ [1] SINDRUM-I: $\mathcal{B}(\mu \to 3e) < 1 \times 10^{-12}$ [2] SINDRUM-II: $R_{\mu e}(\mu N \to eN \text{ on } Au) < 7 \times 10^{-13}$ [3]

Mu2e will increase precision by an incredible 4 orders of magnitude.

Mu2e's single event sensitivity will be 2.5x10⁻¹⁷, sensitive to many BSM models and probing mass scales between 2000 and 7000 TeV.

[1]PRL **110**, 201801 (2013) [2]Nucl. Phys., B **299**, 1 (1988) [3]EPJ C **47**, 337 (2006) 3

Mu2e's Concept

- Use Fermilab's proton beam to create a beam of low momentum muons
- Stop the muons in an Aluminum target (10¹⁸ over 3 yrs)
- Detectors which look for mono-energetic electrons consistent with $\mu N \rightarrow eN$ and differentiate background
- We measure : $R_{\mu e} = \frac{\mu^- + N(A, Z) \to e^- + N(A, Z)}{\mu^- + N(A, Z) \to \nu_\mu + N(A, Z 1)}$

Numerator:

Muon to electron conversion in the presence of a nucleus Denominator:

Nuclear captures of muonic Al atoms

Creating and Decaying Muonic Atom

Comparing DIO to conversion electrons

Experimental effects on DIO to conversion electrons

- Tail of DIO falls as $(E_{Endpoint} E_e)^5$
- A window of a few hundred keV, where Signal >> DIO for $R_{\mu e} = 10^{-16}$

Dan Ambrose – Mu2e - Lake Louise 2019

Fermilab Facility : The Proton's Path

Protons to mu2e every 1694 ns (~600 kHz)

3.6x10²⁰ total protons on target 3.1x10⁷ protons per bunch Sharing the beam with NOvA

The Mu2e Experiment

Mu2e's significant improvement over past experiments relies on its high intensity pulsed muon beam.

3 main components: Production Solenoid (PS), Transport Solenoid (TS), and Detector Solenoid (DS)

Experimental setup contained within vacuum space

```
Gradient magnetic field (4.6 T \rightarrow 1 T) moves charged particles downstream
```

Step 1:

8 GeV proton beam hits tungsten target and produces Pions in PS

Pions decaying into muons are pushed downstream towards TS

Step 2:

TS selects particles based on charge and momentum

TS collimators eliminate backgrounds

Step 3:

Muons are captured in Aluminum target foils

Conversion electron trajectories measured and validated in tracker and calorimeter

Beam Time

- ~20,000 muons per bunch
- 10¹⁰ muons per second

Almost all protons, unstopped muons, stopped and unstopped pions will have passed through the detector before observation window.

Annular Detector Geometry

p = qBr

Beam's-eye view of Tracker

Low Mass Tracker Design

- Excellent momentum resolution better than 180 KeV/c
- 15 micron thick Mylar straws provide for a very low mass detector

Calorimeter

- Provides precise timing, PID, seed for tracking and triggering
- Will employ 2 disks (radius = 37-66 cm)
- ~1400 CsI crystals with square cross-section – ~3 cm diameter, ~20 cm long (10 X0)
- Calorimeter properties have been measured in beam tests

Amcrvs C0013	S-G C0045	SIC C0037		
Amcrys C0015	S-G C0046	SIC C0038		
Amcrys C0016	S-G C0048	SIC C0039		
Amcrys C0019	S-G C0049	SIC C0040		
Amcrys C0023	S-G C0051	SIC C0041		
Amcrys C0025	S-G C0057	SIC C0042		
Amcrys C0026	S-G C0058	SIC C0043		
Amcrys C0027	S-G C0060	SIC C0068		
Amcrys C0030	S-G C0062	SIC C0070		
Amcrys C0032	S-G C0063	SIC C0071		
Amcrys C0034	S-G C0065	SIC C0072		
Amcrys C0036	S-G C0066	SIC C0073		

Cosmic Ray Veto (CRV)

- The CRV covers all of DS and half of TS
- Without CRV, expect ~1 cosmic-ray-induced background event per day (99.99% net efficiency)
- The CRV consists of 4 overlapping layers of scintillator strips with wavelength shifter and aluminum absorber
- Have achieved *ε* > 99.4% (per layer) in test beam

Estimated background yields

Category	Background process		Estimated yield (events)
Intrinsic *	Muon decay-in-orbit (DIO)		$0.144 \pm 0.028(\text{stat}) \pm 0.11(\text{syst})$
	Muon capture (RMC)		$0.000\substack{+0.004\\-0.000}$
Late Arriving ⁺	Pion capture (RPC)		$0.021 \pm 0.001({ m stat}) \pm 0.002({ m syst})$
	Muon decay-in-flight (µ-DIF)		< 0.003
	Pion decay-in-flight (π -DIF)		$0.001 \pm < 0.001$
	Beam electrons		$(2.1 \pm 1.0) \times 10^{-4}$
Miscellaneous	Antiproton induced		$0.040 \pm 0.001({ m stat}) \pm 0.020({ m syst})$
	Cosmic ray induced		$0.209 \pm 0.022(\mathrm{stat}) \pm 0.055(\mathrm{syst})$
		Total	$0.41\pm0.13(\mathrm{stat+syst})$

*Assuming 6x10¹⁷ stopped muons in 6x10⁷ sec of beam time +Assuming an proton beam extinction of 10⁻¹⁰, a cosmic ray veto inefficiency of 10⁻⁴, PID muon-rejection of 200.

2/16/2019

Reconstruction Simulation

Production is underway!

New Building completed in 2016

Schedule

The Mu2e Collaboration

Summary

- There is a lot of excitement about theoretical model discrimination afforded by a 4 order of magnitude improvement on muon conversion sensitivity.
- The Mu2e project has a design which will allow for a single event sensitivity of 2.5×10⁻¹⁷.
- The experimental design is mature and on schedule for commissioning in 2020 and taking production data starting in 2021.

For more detailed information ask or check out :Summary of Experimenthttp://arxiv.org/pdf/1901.11099.pdfTechnical Design Reporthttp://arXiv.org/abs/1501.05241Experiment web sitehttp://mu2e.fnal.gov

• A plan for the upgrade, Mu2e-II, has also progressed

Expression of Interest http://arxiv.org/pdf/1802.02599.pdf

Thank you

Sensitivity to High Mass Scales

Dan Ambrose – Mu2e - Lake Louise 2019

 Λ_c between 2000 to 7000 TeV

W. Altmannshofer, A.J.Buras, S.Gori, P.Paradisi, D.M.Straub

Table 8: "DNA" of flavour physics effects for the most interesting observables in a selection of SUSY and non-SUSY models $\star \star \star$ signals large effects, $\star \star$ visible but small effects and \star implies that the given model does not predict sizable effects in that observable.

Estimates from Flavour Physics of Leptons and Dipole Moments, Eur.Phys.J.C57:13-182,2008

The Comet Experiment

The Comet experiment is another muon to electron conversion experiment which will run at J-PARC.

Phase 1 will be a 100x sensitivity improvement is scheduled to begin in 2020. Phase 2 has a similar sensitivity to Mu2e (10⁴x sensitivity improvement) and is scheduled to begin after Mu2e begins.

For more information on the technical design of Comet : <u>http://arxiv.org/pdf/1812.09018.pdf</u>