FERMILAB-SLIDES-19-075-PPD

Mu2e at Fermilab

Ron Ray Fermilab - Mu2e Project Manager This document was prepared by Mu2e collaboration using the resources of the Fermi National Accelerator Laboratory (Fermilab), a U.S. Department of Energy, Office of Science, HEP User Facility. Fermilab is managed by Fermi Research Alliance, LLC (FRA), acting under Contract No. DE-AC02-07CH11359.

Muon to Electron Conversion

W. Bertl, et al. (SINDRUM-II) Eur. Phys. J. C47 (2006) 337.

100

105

80

85

e⁻ momentum (MeV/c)

Backgrounds

- Prompt e⁻ nearly coincident with μ^- arrival
 - Radiative Pion Capture (RPC)
 - Muon and pion decay-in-flight
- Intrinsic scale with the number of stopped muons
 - Decay-in-Orbit (DIO)
 - Recoil tail extends to conversion energy
 - Radiative Muon Capture (RMC)
 - $\mu^- Al \to \gamma \nu Mg$

 $\mu \text{ Decay in Orbit Spectrum for } ^{27}\text{Al}$

- Cosmic Rays
- Antiprotons

Backgrounds

- Prompt e⁻ nearly coincident with μ^- arrival Pulsed
 - Radiative Pion Capture (RPC)
 - Muon and pion decay-n-flight

- **Radiative Pion Capture** π^{-} **Target foils**
- Intrinsic scale with the number of stopped muons
 - Decay-in-Orbit (DIO)
 - Recoil tail extends to conversion energy.

Pbar

absorbers

- Radiative Muon Capture (RMC)
 - $\mu^{-}Al \rightarrow \gamma \nu Mg$
- Cosmic Rays
- Antiprotons

beam +

extinction

Mu2e

Mu2e Project scope includes

• The Mu2e apparatus

Production Target

- Superconducting Solenoids
 - Production Solenoid
 - Transport Solenoid
 - Detector Solenoid

Production and Transport System

- Production target inside superconducting solenoid significantly enhances stopped muon yield
- Collimation system selects muon charge and momentum range
- 10¹⁰ Hz of stopped muons!
 - Technique demonstrated by MµSIC Collaboration

5

Mu2e Detector

Mu2e Project scope includes

- The Mu2e apparatus
 - Superconducting Solenoids
 - Tracker Straw drift tubes
 - Calorimeter Pure Csl crystals

Mu2e Detector

Mu2e Project scope includes

- The Mu2e apparatus
 - Superconducting Solenoids
 - Tracker Straw drift tubes
 - Calorimeter Pure Csl crystals
 - Cosmic Ray Veto Scintillator

TS-hole

Cryo-hole

🐉 Fermilab

7

Making a Large Flux of Muons for Mu2e

- 8 GeV protons from the Fermilab Booster
 - Booster batch of 4x10¹² protons at 15 Hz
 - re-bunched in the Recycler Ring to 4 bunches extracted one at a time to Delivery Ring
 - Protons resonantly extracted from the Delivery Ring
 - 1695 ns pulse spacing
 - ~40M protons per pulse
- Mu2e can operate year round, simultaneous with NOvA and short baseline neutrino program
 - Cannot operate at the same time as g-2
 Eermilab

Pulsed Beam Eliminates Prompt Background

- 1695 ns between proton pulses
- Wait 700 ns before looking for signal while prompt background dies off
- Extinction factor (out-of-time/in-time protons) < 10⁻¹⁰ required
 - AC Dipole driven by two harmonics 300 kHz, 4.5 MHz
 - RF re-bunching in Recycler Ring

9

Decay-in-Orbit Background

Decay-in-Orbit Background

Requires Tracker core momentum resolution of better than 200 KeV/c and small tails.

🛟 Fermilab

Mu2e Tracker

- 21,000 low mass straw tubes in vacuum
- 5 mm diameter, 15 μm thick metalized mylar walls
- 25 μ m tungsten wire at 1425 V
- 80:20 ArCO₂

Instrumented Tracker Panel

Metalized Straw Tube

Track

5 mm

Top half of Tracker Plane

Mu2e Tracker

Blind to peak of DIO spectrum

- Blind to beam flash
- Blind to > 99% of DIO spectrum

Tracker Simulation

- Simulation tuned to Tracker test beam data.
- Expect to meet requirement.

momentum resolution at start of tracker (simulation)

x(mm)

- Core resolution more than adequate.
- Non-Gaussian tails evaluated by signal + DIO simulation with 1000x full run statistics.

Hits selected by track finder within ± 50 ns selection window

Calorimeter

- Two annular disks separated by "half wavelength"
- Each disk contains 674 pure CsI crystals (34 x 34 x 200 mm³) read out by SiPMs
 75% of crystals, 100% of SiPMs in hand
- Particle ID for cosmic muon rejection
- Seed for tracking algorithm
- Tracker-independent trigger
- Calorimeter effort led by INFN

Calorimeter Beam Test

- May 2017 with 50-115 MeV electrons at INFN Frascati
- 51 30 x 30 x 200 mm³ CsI Crystals, SiPM readout.

TIME RESOLUTION

 χ^2 / ndf = 20.05 / 20

179 ± 5.2

ENERGY RESOLUTION 1996 Entries 120 100 MeV Mean 84.44

200

Energy and time resolutions well within requirements

Cosmic Ray Backgrounds

- Cosmic ray muons can generate background events via decay, scattering, or material interactions
- Mu2e expects 1 signal-like event per day from cosmic rays
 - Total expected background from all sources is 0.4 events over entire run
- To achieve design sensitivity, cosmic ray veto detection efficiency required to be > 99.99%.
- Cosmic ray background can be measured between spills and when beam is off.

Cosmic Ray Muon Background

- Muons can elude Cosmic Ray Veto and enter through the hole at the TS entrance
- 10 times more than cosmic-induced electron background.
- Suppressed by particle ID

Mu2e Cosmic Ray Veto

- 4-layers of extruded scintillator bars, wavelength shifting fibers, read out at both ends with SiPMs.
 - Scintillator and SiPMs all in hand.
- Covers all of DS, half of TS, better than 10⁻⁴ inefficiency

CRV Beam Test

CRV beam test with 120 GeV protons at Fermilab Test Beam.

Sum of Backgrounds

Estimated background for 3.6 x 10²⁰ protons on target

Process	Expected event yield
Cosmic ray muons	$0.21\pm0.02(\texttt{stat})\pm0.06(\texttt{syst})$
Muon decay in orbit	$0.14 \pm 0.03(stat) \pm 0.11(syst)$
Antiprotons	$0.040\pm0.001(ext{stat})\pm0.020(ext{syst})$
Pion capture	$0.021\pm0.001(ext{stat})\pm0.002(ext{syst})$
Muon decay in flight	< 0.003
Pion decay in flight	$0.001 \pm < 0.001$
Beam electrons	$(2.1 \pm 1.0) imes 10^{-4}$
Radiative muon capture	$0.000\substack{+0.004\\-0.000}$
Total	0.41 ± 0.13 (stat+syst)

Sensitivity

Mu2e expects a 10⁴ x increase in sensitivity over SINDRUM II

- Discovery Reach (5 σ): $R_{\mu e} > 2 \times 10^{-16}$
- Exclusion power (90% C.L.): $R_{\mu e} > 8 \times 10^{-17}$

Detector Hall - Completed

Mu2e Status - PS/DS

Mu2e Status - TS

- S-shaped magnet constructed from series of wedge-shaped modules
- Divided into upstream (TSu) and downstream (TSd) sections
- Superconducting Modules fabricated in Italian industry
- Delivered modules cooled to Liquid Helium and powered at Fermilab
- Magnets assembled at Fermilab

TSu

TSd

Module 16

- Rough machining completed

Mu2e Beamline Installation Making Significant Progress

- Most beamline elements installed or being fabricated
- Prototype AC Dipole fabricated and tested
- Extinction collimators fabricated
- Resonant extraction sextupoles fabricated
- Begin running beam to dump next summer

Detector Progress

Cosmic Ray Veto Module Construction at University of Virginia

Calorimeter crystals and SiPM (INFN Contribution)

	-
S-G C0045	SIC C0037
S-G C0046	SIC C0038
S-G-C0048	SIC C0039
S-G C0049	SIC C0040
S-G C0051	SIC C0041
S-G C0057	SIC C0042
S-G C0058	SIC C0043
S-G C0060	SIC C0068
- S-G C0062	SIC C0070
S-G C0063	SIC C0071
S-G C0065	SIC C0072
S-G C0066	SIC C0073
age -	
	1.5.1.1.1.1.C

MU2EDAQ06

TDAQ Test Stand

Half Tracker Plane comprised of 3 panels

Tracker panel production is behind schedule. Expect to ramp up production rate this Fall at University of Minnesota

Instrumented Tracker Panel

Schedule

		20	019			20)20			20)21						2023				
	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q	1	Q2	Q3	Q4
Detectors	Construction, checkout, Cosmic Ray Test prepare										nissio re fo	e for beam									
Solenoids	Con	Construction, checkout, full power cold test Map fields												scion							
Proton Beamline	Con	Construction, checkout, single-turn extraction Commission Resonant Extraction												with							
Physics Data Taking																	F	First	: Phy	sics l	Data
	Project							Pr	epar	e for	Bean	n				В	lear	n Op	perat	ions	

 Schedule is driven by delivery, installation and commissioning of the Solenoids.

🚰 Fermilab

- First beam to diagnostic dump Fall 2020. Ahead of schedule.
- Begin commissioning resonant extraction late 2021
- Begin commissioning detectors with beam– Early 2022
- First physics data taking Early 2023
- Anticipate 4-5 years of running to reach target sensitivity.

Summary

- Mu2e will search for muon-to-electron conversion with a sensitivity of 8 x 10⁻¹⁷ (90% C.L.)
- Construction well underway on all fronts
- Performance demonstrated with prototypes and simulations
- Expect to begin physics data taking in 2023

Backup Slides

Mu2e Collaboration

Experimental Layout

Beam Extinction

- Mu2e has very stringent limits on the amount of beam that appears between pulses. Require extinction factor of 10⁻¹⁰.
- Required to eliminate prompt backgrounds

 Re-bunching in the Recycler Ring provides an extinction factor of about 10⁻⁴.

🛠 Fermilab

• Remainder must be provided by the Mu2e beamline.

Beam Extinction

A magnet is used to deflect out-of-time beam into a downstream collimator

- Ideally, we would use a square pulse to kick out-of-time beam out of (or in-time beam into) the transmission channel, but the 600 kHz bunch rate makes this impossible with present technology.
- We will therefore focus on a system of resonant magnets or "AC Dipoles".

🚰 Fermilab

Extinction – Dual Harmonic Waveform

- AC Dipole driven by two harmonics
 - 300 kHz (half bunch frequency) to sweep out of time beam into collimators
 - 4.5 MHz (15th harmonic) to maximize transmission of in-time beam
 - Beam transmitted at nodes!

🚰 Fermilab

• Higher harmonic optimized for maximum transmission: 99.5%

AC Dipole Design and Prototype

- AC dipole system consists of 6 identical one meter elements, arranged in two 3-meter vacuum vessels.
- Extensive tests done with halfmeter prototype
 - meets all specifications

Production Target

- Intersects 8 kW beam of 8 GeV protons
- Radiatively cooled, distributed target
- Fins radiate heat and provide stiffness
- Operates in 10⁻⁵ T vacuum

Testing@ Rutherford-Appleton Lab (England)

Target End-of-Arm Tooling@ Fermilab

Extinction Monitor

- Detect a small fraction of scattered particles from production target to monitor beam extinction
- Detector located above and behind primary proton dump.
- Statistically build up precision profile for in-time and out-of-time beam.
- Measure extinction at 10⁻¹⁰ to 10% in ~ 4h

Stopping Target

- 34 isotopically pure aluminum foils, 100 micron thick, 15 cm diameter
- Surrounded by plastic absorbers to reduce tracker rates.

Stopping Target Monitor

- HPGe detector located far downstream to limit rates and radiation damage
- Gives ~ 2 keV FWHM resolution in energy range of interest

347 keV 2p \rightarrow 1s muonic X-ray, no time cut

- Stopped muons in Al
- · Ge self-triggered
- Energy resolution ~ 2 keV

Trigger and DAQ System

Stream data in time slices to CPU farm. Employ software trigger filters to identify good events.

Tracker Front-End Electronics

Electronics volume 71<r<80 cm

on every panel inside cryostat

Readout at both ends of straw, preamp and digitization

- Drift time resolution: 2ns (100µm drift radius)
- Time difference resolution: 4cm along straw axis
- ADC for dE/dx measurement to identify highly-ionizing proton hits

Requirements:

- Supply HV to straws (and remote disconnect)
- B-field perturbation <1G in active detector region
- Low power <10kW within cooling capabilities
- Sustain radiation damage from target
- <12 \times 96 dead channels in 5 yrs at 90% CL

Mu2e Particle ID

Tracker – Calorimeter track matching + likelihood analysis

Rejection factor of 200 eliminates this background

A Typical Event

Search for tracker hits with time and azimuthal angle that are compatible with calorimeter cluster ($\Delta T < 50$ ns).

Significantly simplifies pattern recognition.

What Next?

- A next-generation Mu2e experiment makes sense in all scenarios
 - Push sensitivity or
 - Achieve precision to study underlying new physics
 - white paper, arXiv:1307.1168
 - EOI to FNAL PAC arXiv:1802.02599

$\mu N \rightarrow eN vs stopping-target Z$

By measuring the ratio of rates using different stopping targets Mu2e-II can unveil underlying new-physics mechanism

