Bringing heterogeneity to the CMS software framework

Presenter: Oliver Gutsche²

Andrea Bocci¹, W David Dagenhart², Vincenzo Innocente¹, Christopher D Jones², Matti J Kortelainen², Felice Pantaleo¹, Marco Rovere¹

CHEP 2019 4 November 2019 ¹CERN ²FNAL
Introduction

• Co-processors or accelerators like GPUs and FPGAs are becoming more and more popular
 – Being considered for CMS High Level Trigger in Run 3 (see talk by A. Bocci on Wed Track 1)
 – Supercomputers
• CMS’ data processing framework (CMSSW) implements multi-threading using Intel TBB utilizing tasks as concurrent units of work
• We have developed generic mechanisms within the CMSSW framework to
 – Interact effectively with non-CPU resources
 – Configure CPU and non-CPU algorithms in a unified way
• As a first step to gain experience, we have explored mechanisms for how algorithms could offload work to NVIDIA GPUs with CUDA
Concurrent CPU/non-CPU Processing

• When offloading work to non-CPU resources, the CPU needs to eventually know when that work is finished
• Could do a blocking wait
 – Then the thread would be blocked and could not do other work
• Instead, want to keep the TBB thread free to run other tasks

[Diagram showing blocking wait vs non-blocking callback]
External worker concept

- Replace blocking waits with a callback-style solution
- Traditionally the algorithms have one function called by the framework, `produce()`
- That function is split into two stages
 - `acquire()`: Called first, launches the asynchronous work
 - `produce()`: Called after the asynchronous work has finished
- `acquire()` is given a reference-Counted smart pointer to the task that calls `produce()`
 - Decrease reference count when asynchronous work has finished
 - Capable of delivering exceptions
Unified configuration for CPU and non-CPU algorithms

• Want jobs for a workflow to run at any site
• Want same configuration for all jobs in a workflow
 – Be agnostic to the kind of hardware being used for a given job
 – Hash of configuration already used by framework to segregate data from different workflows
• Want to be able to keep CPU and non-CPU algorithms separate
 – No need to touch working code
 – Different hardware may want to group the work differently
 • E.g. CPU might want to spread over 3 modules while GPU wants them combined to 1
 – Not precluding having CPU and non-CPU algorithm in same module either
• Use provenance tracking to store the choice of technology along the Event
 – Framework already tracks the input data of each module Event-by-Event
• Such workflows need to be validated with all technology permutations
Switch mechanism for producers

- SwitchProducer added to configuration
 - Allows specifying multiple modules associated to same module label
 - At runtime picks one to be run based on available technologies
 - Consumers dictate which producers are run

```python
hits = Producer("HitsProducer",
    input = "raw"
)

foo = SwitchProducer(
    cpu = Producer("FooProducer",
        input = "hits"),
    gpu = Producer("FooProducerGPU",
        input = "raw")
)

bar = Producer("BarProducer",
    input = "foo"
)
```

Diagram:

```
raw
  |______hits
    |________|
    |   foo@cpu
        |    |
        |    v
        |     foo
        |       |
        |       v
        |     bar
```

Diagram contents:
- raw
- hits
- foo
- foo@cpu
- foo@gpu
- bar
Goals for the pattern to interact with CUDA

• Allow CPU to do other work while the GPU is running an algorithm
 – Asynchronous execution, i.e. CPU does not wait for the GPU to finish
• Minimize data movements between the CPU and the GPU
 – Transfer data only when necessary
• Mechanism for a chain of modules to share a resource
 – Resource being e.g. GPU memory or a CUDA stream
• Extendable to multiple device types, and multiple devices per type
CUDA pattern: asynchronous execution

- Use only asynchronous CUDA API calls during event processing
 - Mainly memory transfers and memsets
 - Kernel launches are asynchronous by construction
- Asynchronous CUDA API calls require the use of CUDA streams
 - Work items queued in a CUDA stream execute serially, but concurrently wrt other streams
 - Each parallel branch in the module DAG gets its own CUDA stream
- Avoid synchronization points
 - "Raw" memory allocations
 - Amortize their cost with a memory pool, currently based on cub CachingDeviceAllocator
 - cudaDeviceSynchronize()/cudaStreamSynchronize()
 - Instead use external worker to signal framework that the work is done without blocking
 - assert() in kernel code
CUDA pattern: sharing resources between modules

- We introduced a wrapper template `CUDAPродuct<T>` for a product of type `T`
 - Product `T` is partly or fully in GPU memory
- Wrapper holds the device ID and CUDA stream used to produce the product
 - Also CUDA event to mark the completion of asynchronous processing in case that was not finished when the module ended
- Consumer module uses
 - The same device
 - Either the same CUDA stream, or another that synchronizes with the input CUDA stream
- Two types of modules
 - Normal: launch work without synchronization
 - External worker: if need to transfer anything back to CPU and synchronize
CUDA pattern: minimizing data movements

- Add additional modules to do the transfers
- Output product type is different anyway between CPU and GPU
 - At minimum T vs. CUDAProduct<T>
- Exploit framework’s behavior to run a producer only if some other module consumes the product
 - I.e. if no-one asks for the product in CPU, do not transfer
Conclusions and outlook

• CMSSW has generic building blocks to continue exploring the use of non-CPU resources

• We are exploring the performance characteristics of the described CUDA pattern

• We are exploring performance portability technologies like Kokkos, Alpaka, SYCL
 – Aiming for single-source approach for CPU and GPU capable algorithms
 – Need to understand how the pattern with CUDA could be evolved for those technologies