FERMILAB-S ES 19- 069 SCD
Office of

#Fel‘m“ab N ENERGY Science

Brlnglng heterogenelty to the CMS software framework

Presenter: Oliver Gutsche?

Andrea Bocci', W David Dagenhart?, Vincenzo Innocente’, Christopher
D Jones?, Matti J Kortelainen?, Felice Pantaleo’, Marco Rovere’ CMS

Q'L_! %&El)usgrlgi ha¥been authored byé&rml see@ mpg ag :lmger Contract No. DE—AC02—07CH11 QSEWFishNie U.s. DNart nt of Energy, Office of Science,

Office of High Energy Physics.

2= Fermilab
Introduction

» Co-processors or accelerators like GPUs and FPGAs are becoming more and more
popular

— Being considered for CMS High Level Trigger in Run 3 (see talk by A. Bocci on Wed Track 1)
— Supercomputers

« CMS’ data processing framework (CMSSW) implements multi-threading using Intel
TBB utilizing tasks as concurrent units of work

» We have developed generic mechanisms within the CMSSW framework to
— Interact effectively with non-CPU resources
— Configure CPU and non-CPU algorithms in a unified way

» As a first step to gain experience, we have explored mechanisms for how algorithms
could offload work to NVIDIA GPUs with CUDA

CMS

2019-11-04 Matti Kortelainen | Bringing heterogeneity to the CMS software framework

{& Fermilab
Concurrent CPU/non-CPU Processing

» When offloading work to non-CPU resources, the CPU needs to eventually know
when that work is finished

« Could do a blocking wait
— Then the thread would be blocked and could not do other work

 Instead, want to keep the TBB thread free to run other tasks

Threads Threads

~ .) .
Blocking wait, thread With non tt;}locrlng c.allttijack, thretgd
/unable to do work can run other tasks in the meantime

CMS

3 2019-11-04 Matti Kortelainen | Bringing heterogeneity to the CMS software framework o

$& Fermilab
External worker concept

Replace blocking waits with a callback-style solution
Traditionally the algorithms have one function called by the framework, produce()
That function is split into two stages

— acquire(): Called first, launches the asynchronous work
— produce(): Called after the asynchronous work has finished

acquire() is given areference- [-
: Accelerator ! :
Counted smart pointer to the task | GPU,FPGA, |
that calls produce() éy’i etc N%Q
— Decrease reference count when ogb/ - \Off
asynchronous work has finished CPU &/ N
— Capabile of delivering exceptions acquire() | ~ otherwork | produce()

4 2019-11-04 Matti Kortelainen | Bringing heterogeneity to the CMS software framework

{5 Fermilab
Unified configuration for CPU and non-CPU algorithms

» Want jobs for a workflow to run at any site

« Want same configuration for all jobs in a workflow
— Be agnostic to the kind of hardware being used for a given job

— Hash of configuration already used by framework to segregate data from different
workflows

Want to be able to keep CPU and non-CPU algorithms separate
— No need to touch working code
— Different hardware may want to group the work differently
* E.g. CPU might want to spread over 3 modules while GPU wants them combined to 1
— Not precluding having CPU and non-CPU algorithm in same module either
Use provenance tracking to store the choice of technology along the Event
— Framework already tracks the input data of each module Event-by-Event

Such workflows need to be validated with all technology permutations CMS

5 2019-11-04 Matti Kortelainen | Bringing heterogeneity to the CMS software framework

Switch mechanism for producers

« SwitchProducer added to configuration
— Allows specifying multiple modules associated to same module label

— At runtime picks one to be run based on available technologies
« Consumers dictate which producers are run

hits = Producer(“HitsProducer”,
input = “raw”

)

foo = SwitchProducer(
cpu = Producer(“FooProducer”,
input = “hits”),
gpu = Producer(“FooProducerGPU”,
input = “raw”)

)

bar = Producer(“BarProducer?”,
input = “foo”

bar

)

6 2019-11-04 Matti Kortelainen | Bringing heterogeneity to the CMS software framework

2= Fermilab

CMS

$& Fermilab
Goals for the pattern to interact with CUDA

 Allow CPU to do other work while the GPU is running an algorithm
— Asynchronous execution, i.e. CPU does not wait for the GPU to finish
 Minimize data movements between the CPU and the GPU

— Transfer data only when necessary
» Mechanism for a chain of modules to share a resource
— Resource being e.g. GPU memory or a CUDA stream
» Extendable to multiple device types, and multiple devices per type

CMS

7 2019-11-04 Matti Kortelainen | Bringing heterogeneity to the CMS software framework

$& Fermilab
CUDA pattern: asynchronous execution

» Use only asynchronous CUDA API calls during event processing
— Mainly memory transfers and memsets
— Kernel launches are asynchronous by construction
» Asynchronous CUDA API calls require the use of CUDA streams
— Work items queued in a CUDA stream execute serially, but concurrently wrt other streams
— Each parallel branch in the module DAG gets its own CUDA stream
« Avoid synchronization points
— “Raw” memory allocations
* Amortize their cost with a memory pool, currently based on cub CachingDeviceAllocator
— cudaDeviceSynchronize()/cudaStreamSynchronize()
 Instead use external worker to signal framework that the work is done without blocking
— assert() in kernel code

CMS

8 2019-11-04 Matti Kortelainen | Bringing heterogeneity to the CMS software framework

{& Fermilab
CUDA pattern: sharing resources between modules

* We introduced a wrapper template CUDAProduct<T> for a product of type T
— Product T is partly or fully in GPU memory
» Wrapper holds the devide id and CUDA stream used to produce the product
— Also CUDA event to mark the completion of asynchronous processing in case that was
not finished when the module ended
» Consumer module uses
— The same device GPU producer

— Either the same CUDA stream, or another that
synchronizes with the input CUDA stream

e Two types of modules
— Normal: launch work without synchronization GPU consumer

— External worker: if need to transfer anything back
to CPU and synchronize

CUDAProduct<T>

CMS

9 2019-11-04 Matti Kortelainen | Bringing heterogeneity to the CMS software framework

{5 Fermilab
CUDA pattern: minimizing data movements

« Add additional modules to do the transfers

» Output product type is different anyway between CPU and GPU
— At minimum T vs. CUDAProduct<T>

» Exploit framework’s behavior to run a producer
only if some other module consumes the product GPU producer
— l.e. if no-one asks for the product in CPU, do not transfer

CUDAProduct<T>

Transfer
(ExternalWork) GPU consumer

T

CMS

10 2019-11-04 Matti Kortelainen | Bringing heterogeneity to the CMS software framework

2= Fermilab
Conclusions and outlook

« CMSSW has generic building blocks to continue exploring the use of non-CPU
resources

» We are exploring the performance characteristics of the described CUDA pattern

« We are exploring performance portability technologies like Kokkos, Alpaka, SYCL
— Aiming for single-source approach for CPU and GPU capable algorithms
— Need to understand how the pattern with CUDA could be evolved for those technologies

CMS

11 2019-11-04 Matti Kortelainen | Bringing heterogeneity to the CMS software framework

