FERMILAB-SLIDES-19-063-T

Dirac and Majorana neutrino signatures of Primordial Black Holes

Yuber F. Perez-Gonzalez

In collaboration with Cecilia Lunardini arXiv: 1910.XXXX

EHT Collaboration

Neutrino Platform Week 2019: Hot Topics in Neutrino Physics

CERN, October 11th, 2019

This manuscript has been authored by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy, Office of Science, Office of High Energy Physics.

OLEGIO DE FISICA FONDAMENTAL E INTERDISCIPLINARIA DE LAS AMERICAS

Are there other mechanisms for neutrino emission?

Astrophysical Black Holes

 $M\gtrsim 1.4 M_{\odot}$

Carr et al, 0912.5297

- Bubble collisions
- Pressure reduction
- Collapse of density fluctuations

Carr et al, 0912.5297

Black Holes evaporate by thermal emission

Hawking, 1975

Neutrino Platform Workshop - October 11, 2019

Neutrino Platform Workshop - October 11, 2019

Yuber F. Perez-G. - Fermilab/Northwestern

Neutrino emission in the SM

B. Carr, 1976

Neutrino emission in the SM

Neutrino emission in the SM

Yuber F. Perez-G. - Fermilab/Northwestern

Weak interactions

Hawking Effect

Weak interactions

$$n \to p^+ + e^- + \overline{\nu_e}$$

Interaction mediated by a gauge boson

Associated production of a charged lepton

Flavor eigenstate

Hawking Effect

Neutrino Platform Workshop - October 11, 2019

Weak interactions

$$n \to p^+ + e^- + \overline{\nu_e}$$

Interaction mediated by a gauge boson

Associated production of a charged lepton

Flavor eigenstate

Hawking Effect

$$\langle 0_{-} | b_{i}^{\dagger} b_{i} | 0_{-} \rangle = \Gamma_{ln} \left[\exp \left(E_{a} / T_{BH} + 1 \right) \right]^{-1}$$

Particle definition in a curved spacetime is observer dependent

No associated production of a charged lepton

Mass eigenstate

Neutrino instantaneous spectrum

Neutrino instantaneous spectrum

Majorana neutrinos

Dirac neutrinos

Dirac neutrinos

Phenomenological consequences?

Dirac neutrinos

Majorana neutrinos

Dirac neutrinos

Majorana neutrinos

Yamada and Iso, 1610.02586 Morrison et al,1812.10606

Dirac neutrinos

Majorana neutrinos

Yamada and Iso, 1610.02586 Morrison et al,1812.10606

Cecilia Lunardini, YFPG and Jessica Turner, in preparation

Dirac neutrinos

Absorption cross section independent of the helicity

$$\sigma_{\rm abs}^{\nu}(+1/2) = \sigma_{\rm abs}^{\nu}(-1/2)$$

Unruh, 1976

Majorana neutrinos

Yamada and Iso, 1610.02586 Morrison et al,1812.10606

Cecilia Lunardini, YFPG and Jessica Turner, in preparation

Dirac neutrinos

Absorption cross section independent of the helicity

$$\sigma_{\rm abs}^{\nu}(+1/2) = \sigma_{\rm abs}^{\nu}(-1/2)$$

Unruh, 1976

Production of RH neutrinos!

Majorana neutrinos

Yamada and Iso, 1610.02586 Morrison et al,1812.10606

Cecilia Lunardini, YFPG and Jessica Turner, in preparation

SM + RH neutrinos

Neutrino Platform Workshop - October 11, 2019

SM + RH neutrinos

Neutrino Platform Workshop - October 11, 2019

Yuber F. Perez-G. - Fermilab/Northwestern

SM + RH neutrinos

Neutrino Platform Workshop - October 11, 2019

Yuber F. Perez-G. - Fermilab/Northwestern

SM + RH neutrinos

Depends on the set of possible particles to be emitted

Neutrino Platform Workshop - October 11, 2019

Yuber F. Perez-G. - Fermilab/Northwestern

11

Constraints in the Dirac neutrino case

Constraints in the Dirac neutrino case

Let us consider the minimal extension

 $\mathscr{L}_{Y} = -Y_{\nu}^{ab}\overline{L_{L}^{a}}\widetilde{H}\nu_{bR}$
Let us consider the minimal extension

$$\mathscr{L}_{Y} = -Y_{\nu}^{ab}\overline{L_{L}^{a}}\widetilde{H}\nu_{bR}$$

Let us consider the minimal extension

$$\mathscr{L}_{Y} = -Y_{\nu}^{ab}\overline{L_{L}^{a}}\widetilde{H}\nu_{bR}$$

PBHs are formed

 t_i, T_f

Let us consider the minimal extension

$$\mathscr{L}_{Y} = -Y_{\nu}^{ab}\overline{L_{L}^{a}}\widetilde{H}\nu_{bR}$$

Neutrino Platform Workshop - October 11, 2019

Yuber F. Perez-G. - Fermilab/Northwestern

Neutrino Platform Workshop - October 11, 2019

Yuber F. Perez-G. - Fermilab/Northwestern

Diffuse neutrino flux from PBHs

Could we measure these neutrinos?

$$\frac{d\Phi_{\text{PBH}}^{\nu}}{dp_0} = \int_{t_i}^{\min(t_0,\tau)} dt \frac{d\Omega}{4\pi} \frac{a_0}{a_t} \left(\frac{a_i}{a_0}\right)^3 \frac{\rho_{\text{PBH}}^i}{M_i} \frac{d^2 N_{\nu}}{dp \, dt} (M(t), \, p_0 \, a_0 / a_t)$$

Diffuse neutrino flux from PBHs

Diffuse neutrino flux from PBHs

Diffuse flux

18

Diffuse flux from non-evaporating PBHs

Total Majorana v Flux, $m_0 = 0.01 \text{ eV}, M_i > M_*$

Diffuse flux from non-evaporating PBHs

Total Majorana v Flux, $m_0 = 0.01 \text{ eV}, M_i > M_*$

Diffuse flux of RH neutrinos from PBHs

Total RH Neutrino Flux, $m_0 = 0.01 \text{ eV}, M_i \leq M_*$ 10^{20} $m_1 + m_2 + m_3$ • $M_i = 10^0 \text{ g}$ NO CνB • $M_i = 10^2 \text{ g}$ 10^{16} • $M_i = 10^4 \, {\rm g}$ 11 • $M_i = 10^6 \text{ g}$ Neutrino Flux $[\text{cm}^{-2} \text{keV}^{-1} s^{-1}]$ 10^{12} 11 • $M_i = 10^8 \text{ g}$ • $M_i = 10^{10} \text{ g}$ 10^{8} • $M_i = 10^{12} \text{ g}$ • $M_i = 10^{14} \text{ g}$ Solar 10^{4} 10^{0} DNSB n–BBN Atm 10^{-4} 10⁻⁸ 11111 11111 Î 10^{-2} 10^{-6} 10^{4} 10^{0} 10^{2} 10^{6} 10^{8} 10^{-4} Neutrino Momentum [eV] No Planck-relic constraint

Diffuse flux of RH neutrinos from PBHs

Total RH Neutrino Flux, $m_0 = 0.01 \text{ eV}, M_i \leq M_*$ 10^{20} $m_1 m_2 m_2 m_3$ • $M_i = 10^0 \text{ g}$ NO CνB • $M_i = 10^2 \text{ g}$ 10^{16} • $M_i = 10^4 \, {\rm g}$ 11 • $M_i = 10^6 \text{ g}$ Neutrino Flux $[\text{cm}^{-2} \text{keV}^{-1} s^{-1}]$ 10^{12} • $M_i = 10^8 \text{ g}$ • $M_i = 10^{10} \text{ g}$ 10^{8} • $M_i = 10^{12} \text{ g}$ • $M_i = 10^{14} \text{ g}$ Solar 10^{4} 10^{0} DNSB n–BBN Atm 10^{-4} 10⁻⁸ 11111 11111 1111 10^{-2} 10^{-6} 10^{0} 10^{2} 10^4 10^6 10^{-4} 10^{8} Neutrino Momentum [eV] No Planck-relic Why is the $C\nu B$ at $E_{\nu} \sim \mathcal{O}(10^{13}) \text{ GeV} (M/1\text{g})^{-1}$ lower momenta? constraint

Helicity suppression

 $m_0 = 0.01 \text{ eV}$ $\frac{m_{\nu}}{E_{\nu}} \sim 10^{-1} \longrightarrow M = 1 \text{ g}$

Helicity suppression

 $\Gamma^{\rm D}_{\rm C\nu B} \sim 40 \ [\rm kg - year]^{-1}$

Helicity suppression

 $m_0 = 0.01 \text{ eV}$ $\frac{m_{\nu}}{E_{\nu}} \sim 10^{-1} \qquad \Rightarrow \qquad M = 1 \text{ g}$ $\nu_a + n \rightarrow p^+ + e^-$ PTOLEMY? Akhmedov's talk $\Gamma^{\rm D}_{\rm C\nu B} \sim 40 \ [\rm kg - year]^{-1}$

$$\Gamma_{\rm PBH}^{\nu} \sim 10^{-2} \, [\rm kg - year]^{-1}$$

PBH RH flux is still suppressed

Are there other possible ways to try to detect this RH neutrino flux?

Conclusions

- BHs are sources of neutrinos in mass eigenstates
- The PBH evaporation depends on whether neutrinos are Dirac or Majorana particles
- In the Dirac scenario, there is not a helicity suppression of the emission of righthanded neutrinos
- We derived a constraint on the initial PBH fraction given the measurement of Neff by Planck
- For certain values, it is possible to ease the Hubble measurement tension
- The diffuse flux of RH neutrinos can be large, but more careful analysis on its possible detection should be performed

Thank you!

Neutrino Platform Workshop - October 11, 2019

Yuber F. Perez-G. - Fermilab/Northwestern

Backup slides

Evaporation function

$$\varepsilon_{N}(M) = 2f_{1} + 4f_{1/2}^{1} \left\{ \sum_{\ell=e,\mu,\tau} \exp\left[-\frac{M}{\beta_{1/2}M_{\ell}}\right] + 3\sum_{q} \exp\left[-\frac{M}{\beta_{1/2}M_{q}}\right] \right\}$$
$$+ 2\eta_{\nu}^{N} f_{1/2}^{0} \sum_{a=1,2,3} \exp\left[-\frac{M}{\beta_{1/2}M_{a}}\right]$$
$$+ 16f_{1} \exp\left[-\frac{M}{\beta_{1}M_{g}}\right]$$
$$+ 3f_{1} \left\{ 2\exp\left[-\frac{M}{\beta_{1}M_{W}}\right] + \exp\left[-\frac{M}{\beta_{1}M_{Z}}\right] \right\} + f_{0} \exp\left[-\frac{M}{\beta_{0}M_{H}}\right]$$

$$\beta_{s} = \begin{cases} 2.66 & \text{for } s = 0 \\ 4.53 & \text{for } s = \frac{1}{2} \\ 6.04 & \text{for } s = 1 \end{cases} \qquad f_{s} = \begin{cases} 0.267 & \text{for } s = 0 \\ 0.060 & \text{for } s = 1 \\ 0.007 & \text{for } s = 2 \end{cases} \qquad f_{1/2}^{q} = \begin{cases} 0.147 & \text{for } q = 0 \text{ (neutral)} \\ 0.142 & \text{for } q = 1 \text{ (charged)} \end{cases}$$

Absorption cross section

Neutrino Platform Workshop - October 11, 2019

Constraints in the Dirac neutrino case

Hooper et al, 1905.01301

Neutrino spectrum

Hawking spectrum

