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PIP-II Intensity Upgrades
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2019     -->      ~2021    -->     ~2027

PIP-II intensity upgrade, and intermediate upgrades, will require 
increasing performance requirements for the Fermilab Booster.
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Losses per flux

Pellico
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Losses over cycle

At nominal intensity, about half the power loss is at inflection 
and about half at extraction.

Bhat
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New Initatives for Booster Physics Studies
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Starting this year, one day/month for dedicated PS development.
- In addition to everyday parasitic studies/tuning.

Annual US-Japan Collaboration - Mar 18-22
- Included one day of parasitic Booster studies focusing on
lattice measurement & resonance correction.

June Booster Studies – June 17- July 2nd 
- Five dedicated study days, plus eight parasitic study days.
- Six separate study proposals.
- Nine visiting scientists – CERN, Radiasoft, GSI.
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Participants for June 2019 Studies
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Fermilab 
J. Eldred, Y. Alexahin, C. Bhat, A. Burov, S. Chaurize, N. Eddy,
C. Jensen, V. Kapin, J. Larson, V. Lebedev, H. Pfeffer, K. Seiya,
V. Shiltsev, CY Tan, K. Triplett

CERN
H. Bartosik, N. Biancacci, M. Carla, A. Saa Hernandez,
A. Huschauer, F. Schmidt

Radiasoft
D. Bruhwiler, J. Edelen

GSI
V. Kornilov
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A Group Photo

(also Angela, David, Jon, and many key Fermilab participants.)



99

Jeffrey Eldred | Physics Studies for High Intensity Fermilab Booster9 12/6/2019

Booster Physics Studies
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Booster Physics Studies
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from Monthly Dedicated Studies:

1 Adiabatic Capture 

2 Foil Scattering
- WEYBB3 “Foil Scattering Model for Fermilab Booster”

from June 2019 Studies Event:

3 Convective Instability

4 Space-charge Emittance Growth

5 Power-Supply Ripple
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Chandra Bhat, Salah Chaurize, Cheng-Yang Tan, Victor Grzelak, Bill 
Pellico, Brian Schupbach, Kiyomi Seiya, Kent Triplett

1 Adiabatic Capture
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Losses with Intensity
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At or below nominal intensity, injection losses are at a few 
percent level and independent of beam intensity. 

Bhat



13
Longitudinal Capture
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- Adiabatic capture by paraphasing
- A & B RF stations start out of phase and slowly phase in.

- Currently we implement a feature we call the “neck”
- RF starts greater than pi out of phase, then phases in.
- Is the effect of the neck to cover for energy mismatch errors?
- If we remove the neck, more time for paraphrasing normally.

- LLRF to be upgraded to a digital system, expected to improve 
amplitude and phase control.

with neck: no neck:
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Alexey Burov, Jeffrey Eldred, Valeri Lebedev 

3 Convective Instability
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Convective Instability in SPS
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SPS Instability:

Burov identified a CERN SPS instability as a convective instability, 
and derived the properties for the new instability.

Burov
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Convective Instability Study
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A. Burov “Convective instabilities of bunched beams with space 
charge” PRAB 2019. link

The convective instability is a single-bunch collective instability with 
significant head-to-tail amplification, driven by strong wake 
forces in the presence of strong space-charge. 

The instability is damped by synchrotron oscillations and 
chromaticity, therefore a ramp curve with a low-chromaticity 
transition-crossing was prepared.

We were able to confirm the existence of the convective instability in 
the Booster, with its predicted properties. New Physics!

https://arxiv.org/abs/1807.04887
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Signature of Convective Instability
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Transverse intrabunch
motion propagating from 
head to tail.

Each bunch blows up to a 
different amplitude and 
becomes unstable at a 
different time.

Massive beam loss rapidly 
occurs in tail-edge of the 
bunch.

head                   tail

Burov



Neighboring bunch
same instability,
~100 revolutions later.

Vertical Instability for two neighboring bunches

Blue: Estimated Bunch Charge
Orange: Vertical Oscillation

Bunch # 36

Bunch # 37
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Burov



Amplitude of 
Maximum
Vertical Signal

Intrabunch instability completely independent

Timing of
Maximum
Vertical Signal
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Burov
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Convective Instability – Outlook
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Under nominal intensity and chromaticity, the instability is 
observable but has a negligible impact on the beam.

Critical Question:
What chromaticity is needed to mitigate the instability for PIP-II?

In present operation we switch from negative to positive chromaticity 
at transition – we should revise our approach.

Note: We have a bunch-by-bunch damper, but it does not have 
enough bandwidth to damp this intrabunch instability.
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Vladimir Shiltsev, Hannes Bartosik, Salah Chaurize, Jeffrey Eldred, Alex 
Huschauer, Valery Kapin, Vladimir Kornilov, Frank Schmidt, Kiyomi Seiya, 
Cheng-Yang Tan, Kent Triplett

4 Space-Charge
Emittance Growth
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Space-charge Emittance Growth Study
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Loss Mechanism:
- After capture, space-charge tune-spread is very large.
- The tune-spread crosses resonances, leading to emittance growth.
- Until the emittance growth, and losses, reduce the tune-spread.
- Losses occur at injection, transition, extraction, and transfer.

Method:
- Scan betatron tune at injection, vary intensity, chromaticity.
- Measure losses after capture, losses by extraction.
- Measure emittance with multiwires by extraction.
- Measure emittance with IPMs throughout cycle.



Evolution of space charge along the cycle

For fixed transverse emittance and intensity, space charge scales as
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H. Bartosik, A. Huschauer
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Intensity Reduces Tunespace
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4-turns intensity, chromaticity -20 at injection

Losses at
Capture

Losses by
Extraction
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Intensity Reduces Tunespace
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9-turns intensity, chromaticity -20 at injection

Losses at
Capture

Losses by
Extraction
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Intensity Reduces Tunespace
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14-turns intensity, chromaticity -20 at injection

Losses at
Capture

Losses by
Extraction
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Emittance vs. Intensity
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Emittance Growth from 2Qy Resonance
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At highest intensity, emittance already connected to 2Qy resonance.



Losses from 2Qy Resonance

Practical loss limits are encountered immediately, dramatic losses follow.

Losses are much more sensitive to chromaticity.
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07/07/2019Booster '19 | S0930

While AGS IPM (PAC1987):

Ionization Profile Monitor Calibration
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Emittance Growth – Outlook

Results:
- The vertical half-integer resonance already drives emittance 
growth and loss at nominal intensity.

Next Steps:
- Calibrate ionization profile monitors vs. multiwire.
- Verify and improve Booster linear optics measurements.
- Implement harmonic-correction of 2Qy with a properly phased 
subset of quadrupoles.



3232

Jeffrey Eldred | Physics Studies for High Intensity Fermilab Booster32 12/6/2019

Frank Schmidt, Hannes Bartosik, Salah Chaurize, Jeffrey Eldred, Angela 
Saa Hernandez, C. Jensen, Jeff Larson, Howard Pfeffer, Kent Triplett

5 Booster Power 
Supply Ripple
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Booster Power Supply Ripple

Any frequency ripple in the gradient magnet power supply would 
cause modulation of the betatron tune.

No apparent power supply ripple problem at the moment – beam 
was measured, gradient magnet power supply was measured, 
Booster resonant magnet circuit was modeled.

We induced a tune modulation effect to study the impact on the 
beam. One quadrupole was excited with a sinesoidal oscillation of 
180 Hz or 720 Hz and a tune modulation depth of ~0.01.
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Tune Modulation

~0.01 Tune 
Modulation
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Losses induced by Tune Modulation
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No Ripple 180Hz ±5A 720Hz ±5A

A. Saa Hendandez, F. Schmidt
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Losses induced by Tune Modulation & Skew Sextupole
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A. Saa Hendandez, F. Schmidt

Tune-modulation broadens half-integer and integer resonances only.

Skew-sextupole resonance has no interaction with tune modulation.
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Booster Power Supply Ripple – Outlook

Results:
- No evidence of significant orbit or tune modulation in beam.
- No significant interaction was observed between the tune-
modulation, nonlinear resonances, and/or space-charge.

Next Steps:
- Booster circuit model suggests that ripple may have a greater 
impact at frequencies about 1 kHz, need to measure the 
gradient magnet power-supply at higher frequencies.
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Booster Studies – Next Steps

Booster intensity upgrades motivate us to study the scope of the 
physics challenges and to mitigate known sources of beam loss.
Results:
1 Injection losses traced to adiabatic capture.
3 Space-charge emittance growth traced to 2Qy resonance.
4 First verification of convective instability.
5 Power supply ripple does not threaten Booster operation.
Upcoming focus: 
- Accurate characterization of Booster linear optics
- Correction of the half-integer resonance
- Calibration of ionization profile monitors
- Measurement of convective instability at higher intensity with 

nonzero chromaticity
- Investigation of transition crossing losses.
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Backup
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Losses over Cycle
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Pellico
Nagaitsev

Injection & Transition Losses
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PIP-II at 400 MeV
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Two-stage collimators – conceptual design.

Wide-bore RF cavities, 60 kV and 3-inch aperture.

GMPS regulation using ML learning (LDRD).
Flat Injection – correct dipole ramp during injection.

LLRF system upgraded to digital.
Longitudinal & transverse damper amplifier upgrades.

Booster shielding assessment

Magnet girder test-stand for 20 Hz.
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