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Integrable Optics Test Accelerator (IOTA)

First beam Aug 21, 2018
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| Circumference: 40 m
» Particles: electrons/protons Electron energy: 100 MeV

 Main experiments:
— Nonlinear beam optics
— Optical stochastic cooling

Not a user facility!
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. We installed an undulator in the IOTA ring (Ite Feb).
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Experiment idea
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And built an integrating circuit for the photodiode’s current.
The amplitude of the output voltage was proportional to the
number of photoelectrons generated in the photodiode.

In the experiment (late Mar), we study the fluctuation in the
number of photoelectrons, namely, the variance:

var(N) = (N7) = (N)°
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Theoretical prediction
Page 28:
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In our experiment:
Wide band, large solid angle, high QE=80%
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More details on the setup. The photodiode detector

1 Ct Integrating RC circuit
1 (2 pF, 10 kQ)
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Comb filter. Testing the setup

0 ns

S1=(1+61)S)

S
Fhntotinge. Signal il Heliax gL Y-channel S = (1+62)8(t)
integrating .
circuit splitter Fiybrid e — X=81+95 =25()

Test light source
(modulated laser diode)

RG 58 Hybrid Heliax 12"
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5. -5 A=S; -8 = (6 —6)S(t)

A = (1 +6)S(fmax)
var(d, — 67) = 2var(9)
Var(A) = Var(A(tmax))/2

One dataset is 1.5 ms (~11000 turns)

Sample waveform for the test light source
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Noise subtraction algorithm

* In the real experiment with undulator radiation signal/noise<1:
Sample waveform for undulator radiation in IOTA Main sources Of noise:

 The oscilloscope
1mV peak-to-peak
* The integrator’'s op-amp
0.0 1.5mV peak-to-peak
= (together with the scope)

0 50 100 150 200 250 300 350 400
Time, ns

Total RMS noise: = 0.3mV

Extraction of sub noise level fluctuations:

Find the period with high accuracy (>7 figures) 1.5 10 : ,

—+— Variance of A-channel
Map all A-channel data to one period 14 Rescaled Y-channel squared
Bin the data along the time axis L8 f’fa\fgj\;){gévg‘olfom-
%8 Take variance of A-channel in each bin: ‘%1-2
A(t) = ((51 — 52)S(t) + noise H
@ fixed t g~ copst W

var(A(t)) = 2var(8)S%(t) + var(noise)
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Testing the setup. Finding its precision

Detector test idea:

% 10" Test light source. Different ND filters.

[y
[S]

var(N) = (N)?

signal /noise = 1

Keep the test light source in the same regime and use
different ND filters. Relative classical fluctuation (due to
pulse generator and amplifier errors) must stay the same:
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« @ is determined at large (IV'), when signal/noise> 1. var(noise) ~ 1.0fx 10~" V*
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Photoelectron count variance var(/N
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. Poisson contribution is negligible.

/
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Photoelectron count mgan (N) x 107

107 Test light source. Different ND filters. Zoomed in.
var(\) = O{N)?

Sample waveform for the test light source

2
o
@
2 f =3.35 x 107
E 0.6 5
-Ea 2 0.4 =
3 o 0 E
c L1 0.2 g
21
E 0.0 7
S 02 ”
8y Determined error bar =2.5 x 10° -
o ‘ ‘ : 0 50100 150 200 250 300 330 400
0.0 05 1.0 1.5 2.0 25 3.0 ‘ Time, ns
Photoelectron count mean (N) x10°
3% Fermilab

9 9/5/2019  Ihar Lobach | NAPAC2019 Lancing, M



Measurement results in IOTA

 Constant number of electrons in the bunch, different neutral
density (ND) filters in front of the detector

107 Fixed I},can, = 2.6 mA, different ND filters.

| var(N) = (N) + (1/Mg) (N)*
var(N') = (V) + (1/Mysoaa) (N2
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Decreasing optical density of the filters

& Fermilab

10 9/5/2019 Ihar Lobach | NAPAC2019 Lancing, Ml



Measurement results in IOTA

« Changing the electron bunch charge. No neutral density (ND)

filters in front of the detector.

Different values of bunch charge.

Model for bunch dimensions:

Day 1

Day 2

ND filters experiment
Measurement of €,/¢, @1.3mA

------ var(N') = (N)
var(N) = (N) + (1/M) (N)?
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Photoelectron count variance var(/\/)

o

0.4 0.6 0.8 1.0

Photoelectron count mean (\/) x 10°

Increasing charge of the electron bunch

Longitudinal size is constant,
measured with a wall-current
monitor

Vertical size is constant and
determined by multiple scat-
tering on the background gas

Horizontal size and momen-
tum spread are determined
by intrabeam scattering*

Measurement of €, /€, @1.3mA:

— e ——

*S. Nagaitsev, Phys. Rev. ST Accel. Beams 8.6 (2005): 064403.
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Conclusions

Quantitative theoretical model for the experiment from [1] was developed and verified in an
independent experiment in [OTA

It helped corroborate a model of intrabeam scattering in IOTA. The agreement is expected
to improve in the future.

It was shown that along with measurements of longitudinal bunch size [2-5] the fluctuations
can be used to measure transverse bunch size in some cases (e.g., in IOTA).

I. Lobach, V. Lebedev, S. Nagaitsev, A. Romanov, G. Stancari, A. Halavanau, Z. Huang,
and K.-J. Kim, Intensity fluctuations in undulator radiation, will be submitted to PRAB.

Improvements as compared to the similar experiment from [1]:

Better precision due to using the comb filter with one-turn delay and the special noise
subtraction algorithm. In IOTA, fluctuations were two orders of magnitude smaller than in [1].
Fluctuations data were collected for different values of bunch charge.

The transition from Poisson statistics to Super-Poisson statistics was observed in undulator
radiation for the first time.
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