A conduction-cooled SRF cavity: Apparatus and first results

R. C. Dhuley1, M. I. Geelhoed1, Y. Zhao2, I. Terechkine1, M. Alvarez1, O. Prokofiev1, J. C. T. Thangaraj1

1Fermi National Accelerator Laboratory, Batavia, Illinois
2Euclid Techlabs LLC, Bolingbrook, Illinois

2019 Cryogenic Engineering Conference, Hartford, Connecticut
Goal: To demonstrate cryogen-free SRF cavity operation

Take out liquid helium (and its complexities)

Cool SRF cavities conductively with 4 K cryocoolers

Key thermal design criterion

- SRF cavities dissipate heat during operation (dynamic heat load)
- Cryocoolers have limited 4 K cooling capacity
- Need a high thermal conductance link to extract this dynamic load and transport to the cryocooler.
Cavity-cooler thermal link: Our design approach

Surface magnetic fields dissipate most heat near the equator

\[P_{\text{diss}} = \frac{1}{2} R_s \int |H_s|^2 ds \]

E-beam weld niobium rings around the equator to attach a thermal link

O. Prokofiev
Cavity-cooler thermal link: Our design approach

Use high purity (5N) aluminum as the thermal link material

Measure and design low thermal resistance pressed niobium-aluminum contacts

Construct a thermal link for distributed cooling around the cavity equator

R. C. Dhuley et al., *Cryogenics* 93, 86-93, 2018

R. C. Dhuley et al., *IEEE TAS* 29(5), 0500205, 2019
Conduction cooled cavity test setup

Vacuum vessel
- SS304
- 5 feet tall

Cryocooler
- Cryomech PT420 (2 W @ 4.2 K with 55 W @ 45 K)

Magnetic shield
- MuMetal
- Room temperature
- <10 mG total field at the cavity location

Cavity and shield supports
- Ti64 rods

MLI wrapped thermal shield
- Cooled by cryocooler stage-1
- Copper 101 top plate
- Aluminum 1100 shell

SRF cavity
- Cooled by cryocooler stage-2
- Elliptical single cell, 650 MHz
- Niobium or Nb$_3$Sn coated
Conduction cooled cavity test setup

RF driver with feedback for PLL
Conduction cooled cavity test setup
Cool down characteristics

The cryostat cooled to its base temperature within 24 hours
- Cryocooler stage I < 30 K, thermal shield top plate ≈ 32 K
- Cryocooler stage II ≈ 2.95 K
- Cavity cell ≈ 5 - 5.8 K (measured at multiple locations)

A possible reason for the significant cryocooler-cavity ΔT
- The estimated heat leak to cryocooler 4 K stage is ≈ 450 mW, mostly coming via the RF cables
- This heat flows through the cavity body (4 mm thick niobium), then through the thermal link, and into the cryocooler
First results: Accelerating gradient > 1.5 MV/m

- First measurements used a single cell, 650 MHz, niobium cavity
- Cryocooler had available ~1.55 W @ 4.2 K after accounting for the static leaks
Projections for a Nb$_3$Sn coated cavity with the existing link

Need to know the cavity RF surface and cryocooler temperatures

- $T_{cavity, RF}$ is estimated from Q_0, $T_{cryocooler}$ is measured

![Graph showing the relationship between accelerating gradient and temperature]
Projections for a Nb$_3$Sn coated cavity with the existing link

Assume no changes to the link
- $T_{\text{cavity,RF}} = 5.7$ K
- $T_{\text{cryocooler}} = 5.1$ K

$$E_{\text{acc}} \propto \frac{1}{\sqrt{R_{\text{BCS}}(T) + R_{\text{residual}}}}$$

Nb$_3$Sn $<<$ Niobium (see plot)
Nb$_3$Sn has demonstrated as low as 10 nΩ

Projected E_{acc} for Nb$_3$Sn with different residuals

<table>
<thead>
<tr>
<th>Surface resistance in Nb$_3$Sn [nΩ]</th>
<th>E_{acc} [MV/m] with the existing conduction-cooling link</th>
</tr>
</thead>
<tbody>
<tr>
<td>20 (residual = 10)</td>
<td>11.5</td>
</tr>
<tr>
<td>60 (residual = 50)</td>
<td>6.5</td>
</tr>
<tr>
<td>110 (residual = 100)</td>
<td>5.0</td>
</tr>
</tbody>
</table>

https://www.classe.cornell.edu/~liepe/webpage/researchsrmp.html
Summary and outlook

First ever demonstration of accelerating gradients on a cryogen-free, cryocooler conduction-cooled SRF cavity

- Niobium cavity produced >1.5 MV/m with a 2 W @ 4.2 K cryocooler

- There is considerable scope for improving the thermal management in our setup
 - Ongoing: mitigation of static heat leak

- An Nb$_3$Sn coated cavity is projected to yield >10 MV/m accelerating gradients on our existing setup
 - Tests are planned for the near future
This presentation has been authored by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy, Office of Science, Office of High Energy Physics.
Thank you.