

Managed by Fermi Research Alliance, LLC for the U.S. Department of Energy Office of Science

A conduction-cooled SRF cavity: Apparatus and first results

R. C. Dhuley¹, M. I. Geelhoed¹, Y. Zhao², I. Terechkine¹, M. Alvarez¹, O. Prokofiev¹, J. C. T. Thangaraj¹

¹Fermi National Accelerator Laboratory, Batavia, Illinois ²Euclid Techlabs LLC, Bolingbrook, Illinois

2019 Cryogenic Engineering Conference, Hartford, Connecticut

Goal: To demonstrate cryogen-free SRF cavity operation

Take out liquid helium (and its complexities)

Key thermal design criterion

- SRF cavities dissipate heat during operation (dynamic heat load)
- Cryocoolers have limited 4 K cooling capacity
- Need a <u>high thermal conductance link</u> to extract this dynamic load and transport to the cryocooler.

季 Fermilab

Cavity-cooler thermal link: Our design approach

Surface magnetic fields dissipate most heat near the equator

$$P_{diss} = \frac{1}{2} R_s \iint |H_s|^2 ds$$

E-beam weld niobium rings around the equator to attach a thermal link

Cavity-cooler thermal link: Our design approach

Use high purity (5N) aluminum as the thermal link material

Measure and design low thermal resistance pressed niobium-aluminum contacts

R. C. Dhuley et al., Cryogenics 93, 86-93, 2018

Construct a thermal link for distributed cooling around the cavity equator

R. C. Dhuley et al., IEEE TAS 29(5), 0500205, 2019

Conduction cooled cavity test setup

Vacuum vessel

- SS304
- 5 feet tall

M. Alvarez

Magnetic shield

- MuMetal
- Room temperature
- <10 mG total field at the cavity location

I. Terechkine

MLI wrapped thermal shield

- Cooled by cryocooler stage-1
- Copper 101 top plate
- Aluminum 1100 shell

 Cryomech PT420
 (2 W @ 4.2 K with 55 W @ 45 K)

Cavity and shield supports

• Ti64 rods

SRF cavity

- Cooled by cryocooler stage-2
- Elliptical single cell, 650 MHz
- Niobium or Nb₃Sn coated

Conduction cooled cavity test setup

Conduction cooled cavity test setup

Cool down characteristics

The cryostat cooled to its base temperature within 24 hours

- Cryocooler stage I < 30 K, thermal shield top plate ≈ 32 K
- Cryocooler stage II ≈ 2.95 K
- Cavity cell ≈ 5 5.8 K (measured at multiple locations)

A possible reason for the significant cryocooler-cavity ΔT

- The estimated heat leak to cryocooler
 4 K stage is ≈ 450 mW, mostly coming via
 the RF cables
- This heat flows through the cavity body (4 mm thick niobium), then through the thermal link, and into the cryocooler

First results: Accelerating gradient > 1.5 MV/m

- First measurements used a <u>single cell</u>, <u>650 MHz</u>, <u>niobium</u> cavity
- Cryocooler had available ~1.55 W @ 4.2 K after accounting for the static leaks

Projections for a Nb₃Sn coated cavity with the existing link

Need to know the cavity RF surface and cryocooler temperatures

• $T_{cavity,RF}$ is estimated from Q_0 , $T_{cryocooler}$ is measured

Projections for a Nb₃Sn coated cavity with the existing link

Assume no changes to the link

- $T_{cavity,RF} = 5.7 \text{ K}$
- $T_{cryocooler} = 5.1 \text{ K}$

$$E_{acc} \propto \frac{1}{\sqrt{R_{BCS}\left(T\right) + R_{residual}}}$$
 Nb₃Sn << Niobium Nb₃Sn has demonstrated (see plot) as low as 10 n Ω

Projected E_{acc} for Nb₃Sn with different residuals

Surface resistance in $Nb_3Sn\ [n\Omega]$	E _{acc} [MV/m] with the existing conduction-cooling link
20 (residual = 10)	11.5
60 (residual = 50)	6.5
110 (residual = 100)	5.0

Summary and outlook

First ever demonstration of accelerating gradients on a cryogen-free, cryocooler conduction-cooled SRF cavity

- Niobium cavity produced >1.5 MV/m with a 2 W @ 4.2 K cryocooler
- There is considerable scope for improving the thermal management in our setup
 - Ongoing: mitigation of static heat leak
- An Nb₃Sn coated cavity is projected to yield >10 MV/m accelerating gradients on our existing setup
 - Tests are planned for the near future

12

This presentation has been authored by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy, Office of Science, Office of High Energy Physics.

Thank you.

