FERMILAB-SLIDES-19-028-T

The Global Three-Neutrino Oscillation Picture

Iván Martínez Soler

Physics Opportunities in the Near DUNE Detector hall

December 6th, 2018

This manuscript has been authored by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy, Office of Science, Office of High Energy Physics

Neutrino evolution

In the 3ν scenario, neutrino evolution is described by the Schrödinger equation

$$i\frac{d\vec{\nu}}{dt} = \frac{1}{2E} \begin{bmatrix} U^{\dagger} Diag(0, \Delta m_{21}^{2}, \Delta m_{31}^{2})U \pm V_{mat} \end{bmatrix} \vec{\nu} \sim 7.5 \times 10^{-5} eV^{2} \\ \vec{\nu} = (\nu_{e} \nu_{\mu} \nu_{\tau})^{T} \qquad V_{mat} = \sqrt{2}G_{F}N_{e}Diag(1, 0, 0)$$

$$U = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-\delta_{cp}} \\ 0 & 1 & 0 \\ -s_{13}e^{\delta_{cp}} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} P$$

Two possible mass hierarchies

The global fit goal is the determination of the six parameters describing the evolution.

Neutrino evolution

In the 3ν scenario, neutrino evolution is described by the Schrödinger equation

$$i\frac{d\vec{\nu}}{dt} = \frac{1}{2E} \left[U^{\dagger} Diag(0, \Delta m_{21}^2, \Delta m_{31}^2) U \pm V_{mat} \right] \vec{\nu}$$

$$U = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-\delta_{cp}} \\ 0 & 1 & 0 \\ -s_{13}e^{\delta_{cp}} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} P$$

Experiment	Dominant	Important
Solar	θ_{12}	$\Delta m_{21}^2, \theta_{13}$
Reactor LBL	Δm_{21}^2	$ heta_{12}, heta_{13}$
Ractor MBL	θ_{13}	$\left \Delta m_{3l}^2\right $
Atmospheric	θ_{23}	$\left \Delta m_{3l}^2\right , \theta_{13}, \delta_{CP}$
Accelerator LBL ν_{μ} Disapp	$\left \Delta m_{3l}^2\right , \theta_{23}$	
Accelerator LBL ν_e App	δ_{CP}	$\theta_{13}, \theta_{23}, \operatorname{sign}\left(\Delta m_{3l}^2\right)$

Neutrino evolution

Reactor neutrinos: determination of θ_{13}

- $\overline{\nu}_e$ emitted from fission reactions.
- The energy spectrum rise from 1.8 MeV to 4 MeV, and falls to very low rate at 8 MeV.
- At distances of $\sim 1 \text{ km} [1]$

$$P_{ee} = 1 - c_{13}^4 \sin^2 2\theta_{21} \sin^2 \Delta_{21} - \sin^2 2\theta_{13} \sin^2 \Delta_{ee}$$
$$\Delta m_{ee}^2 \approx \cos^2 \theta_{12} |\Delta m_{31}^2| + \sin^2 \theta_{12} |\Delta m_{32}^2|$$

- Reactor neutrinos are sensitive to θ_{13} and Δm_{31}^2 .
- ▶ Double-Chooz, RENO and Daya Bay established that $\theta_{13} \neq 0$
 - ▶ A rate-only analysis determines (Daya Bay Neutrino 2018) $\sin^2 2\theta_{13} = 0.0856 \pm 0.0029$

Phys. Rev. D95, 072006 (2017)

Phys. Rev. D98, 012002 (2018)

Phys. Rev. D72 (2005) 013009

Reactor anomaly

- \blacktriangleright The reevaluation of the $\overline{\nu}_e$ flux determined a deficit in the experimental data.
 - Data/Prediction = 0.952 ± 0.014 ± 0.023 (Daya Bay), 0.918 ± 0.018 (RENO)
- A large initial flux prefers larger values of θ_{13} .
- ► Small impact over θ_{13} since it is dominated by experiment with near detector.

PRL 116, 061801 (2016)

Flux excess at 5 MeV

- The ratio of measured over the predicted flux shows an excess at 5 MeV.
- ▶ The excess is present in all experiments.
- ▶ The "bump" is time independent and it is correlated with the reactor power.
- ▶ The near/far detector arrangement $\rightarrow \theta_{13}$ depends on the relative uncertainties.

I. Tu (RENO), NEUTRINO 2018

Reactor neutrinos: determination of Δm_{31}^2

- A spectrum analysis determines Δm_{31}^2
- ▶ Near detector imposes an upper bound over Δm_{31}^2 .
- ▶ The oscillations measured at the far detector impose lower bound on θ_{13} and Δm_{31}^2

1.00

0.98

0.96 ↑ 0.96 ⊢ 0.94

0.92

0.90^L

Best-Fit W/O oscillations

EH1

EH2 EH3

100 200 300 400 500 600 700 800 900

L_# / E_ (m/MeV)

Solar neutrinos

▶ Solar neutrinos are produced by two different nuclear fusion reactions: pp chains and CNO cycles.

$$4p \rightarrow 4 He + 2e^+ + 2\nu_e + \gamma$$

▶ The flux is composed by ν_e with a characteristic energy (⁷Be,pep) or spectrum (pp, CNO, ⁸B, hep).

Determination of the solar parameters $(\Delta m_{21}^2, \theta_{21})$

 $\blacktriangleright \Delta m_{31}^2 >> E/L$

$$P_{ee}^{3\nu} \approx \cos^2 \theta_{13} \cos^2 \theta_{13}^m P_{eff}^{2\nu} (\Delta m_{21}^2, \theta_{12}) + \sin^2 \theta_{13}^m \sin^2 \theta_{13}$$

For neutrinos created in high densities

$$P_{eff}^{2\nu}(\Delta m_{21}^2, \theta_{12}) = \frac{1}{2}(1 + \cos\theta_{12}^m \cos\theta_{12})$$

- Solar neutrino experiment are mainly sensitive to θ_{12} .
- There is a small dependence on Δm_{21}^2 .
- θ_{13}^m carries a slight dependence with Δm_{31}^2 .
- The constraints over θ_{12} are mainly driven by SK+SNO .
 - SNO present a better precision than SK.
- The results are independent of Solar model used.

Eur.Phys.J. A52 (2016) no.4, 87

Determination of the solar parameters $(\Delta m_{21}^2, \theta_{21})$

NuFIT 4.0 (2018)

- Δm_{21}^2 is determined by KamLAND.
- ▶ Long-baseline reactor experiment.
 - $\overline{\nu}_e$ with $E_{\nu} \sim \text{few MeV}$.
 - ▶ Baseline ~ 180 km.

$$P_{ee}^{3\nu} \simeq c_{13}^4 P_{eff}^{2\nu} + s_{13}^4$$

$$\imath \frac{d\vec{\nu}}{dt} = \begin{bmatrix} \frac{\Delta m_{21}^2}{4E} \begin{pmatrix} -\cos 2\theta_{12} & \sin 2\theta_{12} \\ \sin 2\theta_{12} & \cos 2\theta_{12} \end{pmatrix} \pm \sqrt{2}G_F N_e \begin{pmatrix} c_{13}^2 & 0 \\ 0 & 0 \end{pmatrix} \end{bmatrix} \vec{\nu}, \ \vec{\nu} = \begin{pmatrix} \nu_e \\ \nu_a \end{pmatrix}$$

KamLAND determination of Δm^2_{21} shows a $\sim 2\sigma$ [1-3] tension with solar experiments.

- I. Esteban, et al., arXiv:1811.05487, NuFIT 4 (2018), www.nu-fit.org
- [2] F. Capozzi, et al., Prog.Part.Nucl.Phys. 102 (2018) 48-72
- [3] P.F. de Salas, et al., Phys.Lett. B782 (2018) 633-640

Tension in Δm_{21}^2

Non observation of low-energy turn up ${}^{8}B$ neutrino spectrum measured.

Observations indicates:

• $P_{ee} \sim 30\%$ at high energy (⁸B, hep).

▶ $P_{ee} \sim 60\%$ at low energy (pp, ⁷Be, CNO and low ⁸B).

Phys. Rev. D 98, 030001 (2018)

Tension in Δm_{21}^2

Observation of a larger day/night asymmetry than predicted by KamLAND.

Phys. Rev. D94, 052010 (2016)

Atmospheric neutrinos

▶ Created in the collisions of cosmic rays with the atmosphere.

$$\begin{aligned} \pi^{\pm} &\to \mu^{\pm} + \nu_{\mu}(\overline{\nu_{\mu}}) \\ K^{\pm} &\to \mu^{\pm} + \nu_{\mu}(\overline{\nu_{\mu}}) \\ \mu^{\pm} &\to e^{\pm} + \nu_{e}(\overline{\nu_{e}}) + \nu_{\mu}(\overline{\nu_{\mu}}) \end{aligned}$$

- Atmospheric flux covers a wide range of energies $(\phi_{\nu} \sim E_{\nu}^{-2.7}).$
- ▶ The main uncertainties are parametrized by:
 - The normalization.
 - A energy dependence $(\phi_{\nu} \sim \phi_0 (E/E_0)^{\gamma})$
 - The relative contribution of π and K $(R_{\pi/K})$
 - The ratio between the neutrino and the antineutrino flux $(\phi_{\nu}/\phi_{\bar{\nu}})$

Phys. Rev. D92, 023004 (2015)

Atmospheric neutrinos: contribution to the global fit

- For $E_{\nu} \ge 0.5$ GeV and the earth baselines $(10^2 10^4)$ km $\Delta m_{21}^2 L/E_{\nu}$ has a subleading effect.
- Atmospheric neutrinos are sensitive to Δm_{31}^2 , θ_{23} , θ_{13} and δ_{cp} .

Atmospheric neutrinos: mass hierarchy determination

- ▶ 1-3 resonance for ν crossing the Earth with energies $E_{\nu} \in [2-10]$ GeV.
- ▶ For NO (IO) there is a resonance in the ν -channels ($\overline{\nu}$ -channels).
- \blacktriangleright Atmospheric experiment cannot distinguish ν from $\overline{\nu}$
 - Cherenkov radiation.
- The number of events contains a contribution of $\nu + \overline{\nu}$.
 - The neutrino contribution is four times bigger
- Statistical determination of the mass hierarchy.

- ► $\nu_e/\overline{\nu}_e$ and $\nu_\mu/\overline{\nu}_\mu$ with $E_\nu \in [0.6 7]$ GeV (T2K:~ 0.6 GeV, NO ν A: ~ 2 GeV, MINOS: ~ 3 GeV, MINOS+: ~ 7 GeV)
- ▶ The baseline is ~ 100 km (T2K:~ 295 km, NO ν A: ~ 810 km, MINOS/MINOS+: ~ 735 km)

$$\blacktriangleright \nu_{\mu} \to \nu_{\mu}, \, \nu_{\mu} \to \nu_{e}$$

Phys. Rev. D96, 092006 (2017)

- ► $\nu_e/\overline{\nu}_e$ and $\nu_\mu/\overline{\nu}_\mu$ with $E_\nu \in [0.6 7]$ GeV (T2K:~ 0.6 GeV, NO ν A: ~ 2 GeV, MINOS: ~ 3 GeV, MINOS+: ~ 7 GeV, **DUNE:**~ 2.5 **GeV**)
- The baseline is ~ 100 km (T2K:~ 295 km, NOνA: ~ 810 km, MINOS/MINOS+: ~ 735 km, DUNE:1300 km)

$$\blacktriangleright \ \nu_{\mu} \to \nu_{\mu}, \ \nu_{\mu} \to \nu_{e}$$

Phys. Rev. D96, 092006 (2017)

3.2

3

 $\Delta m_{\mu\mu}^2 = \sin^2 \theta_{12} \Delta m_{31}^2 + \cos^2 \theta_{12} \Delta m_{32}^2 + \cos \delta_{cp} \sin \theta_{13} \sin 2\theta_{12} \tan \theta_{23} \Delta m_{21}^2$

- *P*_{µµ} is symmetric around θ₂₃ ~ 45 (maximal mixing or not)
 ▶ Discriminate between maximal mixing or not.
- $P_{\mu\mu}$ is sensitive to Δm_{31}^2

- Phys. Rev. D72 (2005) 013009
- [2] Prog. Theor. Phys. 114 (2006) 1045-1056

 ν_e apperance channel

$$P_{\nu_{\mu} \to \nu_{e}} \approx 4 \sin^{2} \theta_{13} \sin^{2} \theta_{23} (1 + 2oA) - C \sin \delta_{cp} (1 + oA)$$

$$P_{\bar{\nu_{\mu}} \to \bar{\nu_{e}}} \approx 4 \sin^{2} \theta_{13} \sin^{2} \theta_{23} (1 - 2oA) + C \sin \delta_{cp} (1 - oA)$$

$$HEP 00 (2015) 016$$

 $\nu_{\mu} \rightarrow \nu_{e}$ is sensitive to

- the θ_{23} octant;
- ▶ mass hierarchy;
- $\blacktriangleright \delta_{cp};$
- ► θ₁₃.

where

$$C = \Delta m_{21}^2 L / 4E \sin 2\theta_{12} \sin 2\theta_{13} \sin 2\theta_{23}$$

$$o = sign(\Delta m_{31}^2)$$

$$A = |2EV / \Delta m_{31}^2|$$

 ν_e apperance channel

22/33

 ν_e apperance channel

23/33

 ν_e apperance channel

 ν_e apperance channel

25/33

Determination of θ_{23} and Δm_{31}^2

- Preference for the second octant of θ_{23}
- Maximal mixing is disvafor by:
 - ▶ T2K (app. channel)
 - NO $\nu \dot{A}$ ($\bar{\nu}$ -disapp. channel and app. channel)

Determination of mass hierarchy

Preference for NH $\sim 3\sigma$.

- ► SK (SK + T2K) (bounds θ_{13} from reactors): favor NH ~ 2.1 σ (~ 2.3 σ)
- ► T2K (adding θ_{13} from reactors): NH favored ~ 2σ
- ► NO ν A: NH favored ~ 1.3 σ
- ► MINOS + MINOS+: very weak preference for NH $\sim 0.6\sigma$.

Determination of CP-violation phase

Y. Hayato (Super-Kamiokande), NEUTRINO 2018

- The best-fit of LBL shows $\delta_{cp} = 215^{\circ}$
 - ► T2K and NO ν A (IO) prefer maximal CP violation $(\delta_{CP} \sim 270^{\circ})$
 - NO ν A (NO) prefer $\delta_{CP} \sim 30^{\circ}$
- SK favor $\delta_{cp} = 270^{\circ}$

Conclusions

Conclusions

Most of the neutrino oscillation data can be explained in the framework of 3 neutrino mixing.

The least known oscillation parameters [1,2,3]:

- δ_{CP} (Recent result push to non-maximal violation)
- The octant of θ_{23} (preference for the second octant)
- The mass hierarchy (preference for NO at more than 3σ)
- [1]I. Esteban, et al., arXiv:1811.05487, NuFIT 4

(2018), www.nu-fit.org

- [2] F. Capozzi, et al., Prog.Part.Nucl.Phys. 102 (2018) 48-72
- [3] P.F. de Salas, et al., Phys.Lett. B782 (2018)

633-640

Conclusions

Comparison between different global fits

	Esteban et al., [1]	Capozzi et al.,[2]	Salas et al.,[3]
$\sin^2 \theta_{12}$	$0.310\substack{+0.013\\-0.012}$	$0.304^{+0.014}_{-0.013}$	$0.320^{+0.20}_{-0.16}$
$\sin^2 \theta_{23}$	$0.580\substack{+0.017\\-0.021}$	$0.551\substack{+0.019\\-0.070}$	$0.547\substack{+0.20\\-0.30}$
$\sin^2 \theta_{13}$	$0.02241^{+0.00065}_{-0.00065}$	$0.0214\substack{+0.0009\\-0.0007}$	$0.0216\substack{+0.00083\\-0.00069}$
δ_{CP}	215_{-29}^{+40}	234_{-32}^{+41}	218^{+38}_{-27}
$\frac{\Delta m_{21}^2}{10^{-5} {\rm eV}^2}$	$7.39^{+0.21}_{-0.20}$	$7.34_{-0.14}^{+0.17}$	$7.55_{-0.16}^{+0.20}$
$\frac{\Delta m_{31}^2}{10^{-3} {\rm eV}^2}$	$2.525\substack{+0.033\\-0.031}$	$2.455^{+0.035}_{-0.032}$	$2.50\substack{+0.03\\-0.03}$

[1] I. Esteban, et al., arXiv:1811.05487, NuFIT 4 (2018), www.nu-fit.org

[2] F. Capozzi, E. Lisi, A. Marrone, and A. Palazzo, Prog.Part.Nucl.Phys. 102 (2018) 48-72

[3] P.F. de Salas, D.V. Forero, C.A. Ternes, M. Tortola, J.W.F. Valle, Phys.Lett. B782 (2018) 633-640

Thank you!

KamLAND and the 5 MeV excess

- There is no a near detector in KamLAND.
- the flux can be affected by the excess around $E_{\nu} \sim 5$ MeV.
- There is a small impact on the determination of Δm_{21}^2

