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The Patatrack group
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• Patatrack was formed by people with common interest and a varied
pool of expertise
− Software optimisation
− Heterogeneous architectures
− Track reconstruction
− High Level Trigger

• Work started in 2016 with the participation to the EuroHack 2016
event, sponsored by NVIDIA

• And continued through 2017 to 2019 with self-organized Hackathons at
CERN, collaboration with Openlab, training and working with students,
and so on



The Patatrack demonstrator
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• Goal is demonstrate that part of the HLT reconstruction can be
efficienty offloaded
− Running on a single machine equipped with GPUs

• Focus on a ∼ 10 % slice of HLT time consumption
− Pixel local reconstruction
− Pixel-only track reconstruction
− Vertex reconstruction

• Other groups have started to work on
− Calorimeters local reconstruction
− Full track reconstruction

• For more details see closeby talks in
− ACAT 2019, 10–15 March, Saas-Fee (Switzerland)
− CDT/WIT 2019, 2–5 April, Valencia (Spain)

https://indico.cern.ch/event/708041/timetable/?view=standard#465-towards-a-heterogeneous-hi
https://indico.cern.ch/event/742793/timetable/?view=standard#93-first-pixel-tracks-fit-on-g


The Patatrack demonstrator workflow
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• Copy the pixel raw data to the GPU
• Pixel local reconstruction

− Decode the raw data
− Clustering
− Calibrations

• Pixel-only tracking
− Form hit doublets
− Form hit quadruplets with Cellular automaton algorithm

• Optionally
− Full track fit (Riemann, Broken-line fits)

• Some GPU algorithms are same, others different wrt. (legacy) CPU
− Implementations are currently different
− Bitwise or statistically identical physics performance

• Organized as a chain of 3 GPU producer modules
− Pass GPU data from one producer to the next
− Use the CMSSW’s “external worker” mechanism



The Patatrack demonstrator (2018)
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Timing Performance on 2018 data

Figure: Comparison between CPU and GPU Timing

November 8, 2018, CMS Collaboration Patatrack Demonstrator: Pixel Tracks 12

• 2018 data: average pileup 50
• HLT-like configuration, optimised for maximal throughput
• One Tesla V100 is 5×–7× faster than one Xeon Gold 6130



CPU utilization
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• Caveat: different machine
(i7-4771, GeForce RTX 2080)
− 8 threads and 8 concurrent events

• After the initialization
− CPU utilization is roughly 50 %
− There are roughly 4–5 external

workers scheduled in parallel
• NB: this workflow is “artificially”
tuned to minimize the CPU
utilization

Time (ms)

Number of running modules

Number of scheduled
external workers



GPU utilization

Matti Kortelainen (FNAL), CMS Patatrack project HOW2019, 2019–03–19 7/12

• Screenshot of NVIDIA Visual Profiler for a random 10 ms period
• Kernels and data transfers being run in parallel



Lessons learned: design principles
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• For optimal performance, follow a Data Oriented Design
− Memory operations are costly, computations are almost free
− Design the data structure for maximal efficiency (SOA vs ... vs. AOS)
− Implement the algorithms around the data structure
− Avoid object-oriented patterns in critical code e.g. data formats

? inheritance, virtual functions, etc
• Most (all?) GPU operations (memory copies, running “kernels”, etc)
should be asynchronous
− The “kernels” run on the GPU while the CPU is doing other work
− The GPU can transfer data to and from the host while both the CPU and the

GPU are working
• Memory transfer, and especially data format conversions, between CPU
and GPUs are costly
− In some cases, almost as much as running the original algorithm itself



Lessons learned:
tools and architectures
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• CUDA and CMSSW support different sets of compilers and C++
features
− CUDA 10.1 supports

? C++ 14
? GCC 8, CLANG 7

. CUDA 10.0 supported GCC 7, CLANG 6
− CMSSW 10.6.X supports

? C++ 17
? GCC 7 and GCC 8, CLANG 7
? CUDA 10.1 in latest pre-release (was 10.0 before)

• Unfortunately, we need to keep the host and device code somewhat
separate
− Host code can use C++ 17 features
− Device code (and common code) is limited to C++14 features
− You do not want to #include framework (or ROOT) headers in device code!



Lessons learned:
what about CMSSW?
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• Redesign dedicated data formats for use on GPUs
− In fact, they might be more efficient also on traditional CPUs

• Design a chain of algorithms (framework modules) that work on the
GPU
− Without copying data back and forth

• Take advantage of the “external worker” approach in CMSSW
− Launch the work on the GPU, schedule other work in parallel on the CPU

• Split GPU modules in two parts
− The part that deals with the framework and the rest of the CMSSW
− The part that deals with the GPU data structures and kernels

• Split the GPU-related work in two (or more) modules, e.g.
− Copy data from CPU to GPU, launch kernels
− Copy data from GPU to CPU

? ran only if another modules consumes the CPU SOA
− Transform CPU SOA to CPU legacy data format

? ran only if another module consumes



Model for CUDA Producers
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• Aim to avoid blocking synchronization as much as possible
• A helper object gives the CUDA device and stream to use for the
algorithms

• Memory management
− Raw CUDA allocations and frees should be avoided within the event loop
− Preallocating memory buffers as module member data leads to unnecessarily

high GPU memory use
− We went for a caching allocator for device and pinned-host memory that

amortizes the cost of raw CUDA allocations
? Currently based on the caching allocator of cub

• GPU event products are like regular EDM products, but enclosed in a
wrapper that holds also the CUDA device and the CUDA stream
− Allows the consumer to set the device, and queue more work to the same

CUDA stream
− Allows also the TBB-flowgraph streaming_node style operation

? Module in the middle of the chain may only queue more asynchronous work
? Later module in the chain synchronizes (with “external worker”)



Conclusions
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• We have demonstrated that GPUs are an efficient alternative to
traditional CPUs
− For complex tasks like track reconstruction

• Next steps
− Integrate the developments in the official CMSSW
− Continue evolving the framework to make it easier to leverage GPUs
− Focus on code portability and avoiding code duplication as much as possible
− Study how more algorithms and data structures could benefit from GPUs
− Study local vs. remote offloading to GPUs
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BACKUP MATERIAL



The Patatrack demonstrator (2018)
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HLT Pixel Tracking performance

(a) TTbar Efficiency vs η (b) TTbar Fake Rate vs η

Figure: Track reconstruction efficiency as a function of simulated track η (a),
and fake rate as a function of reconstructed track η (b).
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• Similar efficiency and fake rate as with legacy CPU algorithm
• More information: CMS Detector Performance Note DP-2018/059

https://cds.cern.ch/record/2646774


The Patatrack demonstrator (2018)
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HLT Pixel Tracking performance

(a) pT resolution vs pt (b) pT resolution vs η

Figure: Track pT resolution as a function of the simulated track pT (a) and η
(b)
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• Proper fits improve resolution significantly
• More information: CMS Detector Performance Note DP-2018/059

https://cds.cern.ch/record/2646774

