ns,

FERMILAB-SLIDES-19-010-CD

CMS Patatrack project

A. Bocci1, V. Innocente1, M. Kortelainenz, F. Pantaleo1, M. Rovere'
CERNT, FNALZ

2019 Joint HSF/OSG/WLCG Workshop
March 19, 2019

This manuscript has been authored by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the U.S.
Department of Energy, Oftfice of Science, Office of High Energy Physics.

CAS,

L, The Patatrack group
L. 3

e Patatrack was formed by people with common interest and a varied
pool of expertise
— Software optimisation

— Heterogeneous architectures
— Track reconstruction
— High Level Trigger

e Work started in 2016 with the participation to the EuroHack 2016
event, sponsored by NVIDIA

e And continued through 2017 to 2019 with self-organized Hackathons at
CERN, collaboration with Openlab, training and working with students,
and so on

Matti Kortelainen (FNAL), CMS Patatrack project HOW2019, 2019-03-19 2/12

CMS,

L, 3 The Patatrack demonstrator
'

e Goal is demonstrate that part of the HLT reconstruction can be
efficienty offloaded
— Running on a single machine equipped with GPUs

e Focus on a ~ 10% slice of HLT time consumption
— Pixel local reconstruction

— Pixel-only track reconstruction
— Vertex reconstruction

e Other groups have started to work on
— Calorimeters local reconstruction
— Full track reconstruction
e For more details see closeby talks in
— ACAT 2019, 10-15 March, Saas-Fee (Switzerland)
— CDT/WIT 2019, 2-5 April, Valencia (Spain)

Matti Kortelainen (FNAL), CMS Patatrack project HOW2019, 2019-03-19 3/12

https://indico.cern.ch/event/708041/timetable/?view=standard#465-towards-a-heterogeneous-hi
https://indico.cern.ch/event/742793/timetable/?view=standard#93-first-pixel-tracks-fit-on-g

F& [he Patatrack demonstrator workflow, [Chis

L. 2

e Copy the pixel raw data to the GPU
e Pixel local reconstruction
— Decode the raw data

— Clustering
— Calibrations

e Pixel-only tracking
— Form hit doublets
— Form hit quadruplets with Cellular automaton algorithm
e Optionally
— Full track fit (Riemann, Broken-line fits)
e Some GPU algorithms are same, others different wrt. (legacy) CPU
— Implementations are currently different
— Bitwise or statistically identical physics performance
e Organized as a chain of 3 GPU producer modules
— Pass GPU data from one producer to the next

— Use the CMSSW's “external worker” mechanism
Matti Kortelainen (FNAL), CMS Patatrack project HOW2019, 2019-03-19 4/12

he

CMS Preliminary 2018 data 13 TeV

mwithout Riemann fit

7000
awith Riemann fit

Throughput (evis)

e 2018 data: average pileup 50

e HLT-like configuration, optimised for maximal throughput
e One Tesla V100 is 5x—7 x faster than one Xeon Gold 6130

Matti Kortelainen (FNAL), CMS Patatrack project

HOW2019, 2019-03-19 5/12

L, . CPU utilization
'

modules running event stalled module running

modules running other multiple modules running external work @ Caveat: diﬁerent maChlne

] (i7-4771, GeForce RTX 2080)
] | — 8 threads and 8 concurrent events
———— | ¢ After the initialization
° S —— — CPU utilization is roughly 50 %
%5_ 030 e — There are roughly 4-5 external
g4 m i workers scheduled in parallel
B s | ® NB: this workflow is “artificially”
24 S ———————— tuned to minimize the CPU
1 ——————— utilization
%] T T————
(I) 10I00 20I00 30I00 40I00 50I00
8 a ————Number of scheduled
2 s external workers
#
04

0 1000 2000 3000 4000 5000
Time (ms)

Number of running modules

Matti Kortelainen (FNAL), CMS Patatrack project HOW2019, 2019-03-19 6/12

L, . GPU utilization
'

74395 7445

74425 74435

74345 7435s 7436 s 7437s 7438s 7441 s

[=| [0] GeForce RTX 2080
(I T T | 11 A1 i

[=] Context 1 (CUDA)
| ||||I|I| Il I |
| | |
LW R D | T |

- MemCpy (HtoD)

5 MemCpy (DtoH) | |

Compute

| W 1 Y |
(T LN Reeor | e JUNNI fooe Qe § | (Mfcooe O B NN AW QUN —H N BN (N[0!
I 1| B I § Rlilco] = | BTN NI | N
| | I I | I | [I |
| | |I | | \ | [

e Screenshot of NVIDIA Visual Profiler for a random 10 ms period
e Kernels and data transfers being run in parallel

Matti Kortelainen (FNAL), CMS Patatrack project HOW2019, 2019-03-19 7/12

CMS,

L, B Lessons learned: design principles 3

e For optimal performance, follow a Data Oriented Design

— Memory operations are costly, computations are almost free
— Design the data structure for maximal efficiency (SOA vs ... vs. AOS)
— Implement the algorithms around the data structure
— Avoid object-oriented patterns in critical code e.q. data formats
* inheritance, virtual functions, etc
e Most (all?) GPU operations (memory copies, running “kernels”, etc)
should be asynchronous
— The “kernels” run on the GPU while the CPU is doing other work

— The GPU can transfer data to and from the host while both the CPU and the
GPU are working

e Memory transfer, and especially data format conversions, between CPU
and GPUs are costly

— In some cases, almost as much as running the original algorithm itself

Matti Kortelainen (FNAL), CMS Patatrack project HOW2019, 2019-03-19 8/12

CMS,

L, 3 L essons learned:
'

tools and architectures

e CUDA and CMSSW support different sets of compilers and C++
features
— CUDA 10.1 supports

* C++ 14
* GCC 8, CLANG 7
> CUDA 10.0 supported GCC 7, CLANG 6

— CMSSW 10.6.X supports

* C4++ 17
* GCC 7 and GCC 8, CLANG 7
* CUDA 10.1 in latest pre-release (was 10.0 before)

e Unfortunately, we need to keep the host and device code somewhat
separate
— Host code can use C4++ 17 features

— Device code (and common code) is limited to C++14 features
— You do not want to #include framework (or ROOT) headers in device code!

Matti Kortelainen (FNAL), CMS Patatrack project HOW2019, 2019-03-19 9/12

CMS,

L, 3 L essons learned:
'

what about CMSSW?

e Redesign dedicated data formats for use on GPUs
— In fact, they might be more efficient also on traditional CPUs
e Design a chain of algorithms (framework modules) that work on the

GPU
— Without copying data back and forth

e Take advantage of the “external worker” approach in CMSSW

— Launch the work on the GPU, schedule other work in parallel on the CPU
e Split GPU modules in two parts

— The part that deals with the framework and the rest of the CMSSW

— The part that deals with the GPU data structures and kernels
e Split the GPU-related work in two (or more) modules, e.g.

— Copy data from CPU to GPU, launch kernels

— Copy data from GPU to CPU

* ran only if another modules consumes the CPU SOA

— Transform CPU SOA to CPU legacy data format

% ran only if another module consumes
Matti Kortelainen (FNAL), CMS Patatrack project HOW2019, 2019-03-19 10/12

CMS,

L, B Model for CUDA Producers
'

e Aim to avoid blocking synchronization as much as possible
e A helper object gives the CUDA device and stream to use for the
algorithms
e Memory management
— Raw CUDA allocations and frees should be avoided within the event loop
— Preallocating memory buffers as module member data leads to unnecessarily
high GPU memory use
— We went for a caching allocator for device and pinned-host memory that
amortizes the cost of raw CUDA allocations
* Currently based on the caching allocator of cub
e GPU event products are like reqular EDM products, but enclosed in a
wrapper that holds also the CUDA device and the CUDA stream
— Allows the consumer to set the device, and queue more work to the same
CUDA stream
— Allows also the TBB-flowgraph streaming_node style operation
* Module in the middle of the chain may only queue more asynchronous work

* Later module in the chain synchronizes (with “external worker”)
Matti Kortelainen (FNAL), CMS Patatrack project HOW2019, 2019-03-19 11/12

€ Conclusions
'

CMS,

e We have demonstrated that GPUs are an efficient alternative to
traditional CPUs

— For complex tasks like track reconstruction
e Next steps
— Integrate the developments in the official CMSSW

— Continue evolving the framework to make it easier to leverage GPUs

— Focus on code portability and avoiding code duplication as much as possible
— Study how more algorithms and data structures could benefit from GPUs

— Study local vs. remote offloading to GPUs

Matti Kortelainen (FNAL), CMS Patatrack project HOW2019, 2019-03-19 12/12

he

BACKUP MATERIAL

Matti Kortelainen (FNAL), CMS Patatrack project

HOW2019, 2019-03-19 13/15

The Patatrack demonstrator (2018) 33

1 CMS simulation preliminary 13 TeV
g
o 09
O 08k =Reference Run2
% . sRiemann Fit
o> O7F «Broken Line Fit
c 0.6 :_*,"‘“
'_g B why
@ 05 * !"}"."’p .-..,m » v
— = ¥]
= 04f -
E ¥y

0.3F ¥ '

0.2F -

0 1; tt event tracks ((PU)=50)

—25-2-15-1-050 05 1 15 2 25

Simulated track n

Tracking fake rate

CMS,

2 d|

CMS simulation preliminary 13 TeV

0.2¢
0'185 tt event tracks '((PU}:SO)
0AB
0.1 4;_ * """;Relerent;e RL;n2 **
0.12F ® ¥ sRiemann Fit ¥
- +Broken Line Fit
0.1:* W [3
0.08F
Cw L] M *
0.06:1 a
0.04% - I —
E b 3 »
0.02¢ T e ™
_III\II\IIIII‘III\iII\IiI\IIiIII\II\IIIIIIII\
-25-2-15-1-050 05 1 15 2 25
Track n

e Similar efficiency and fake rate as with legacy CPU algorithm
e More information: CMS Detector Performance Note DP-2018/059

Matti Kortelainen (FNAL), CMS Patatrack project

HOW2019, 2019-03-19 14/15

https://cds.cern.ch/record/2646774

CMS,

CMS simulation preliminary 13 TeV

. bt

CMS simulation preliminary 13 TeV

— 0.A1f
Q L - Q -
= it event tracks ((PU)=50) = 0.09f
o o . + T
5 =Reference Run2 5 008 E + '+
g 107" E_ +Riemann Fit -m E 5 075 :rf * +
o «Broken Line Fi U/lr ¥
0 o IR N, 0 B E e + M
o S ;l:a* o 0.06} - H
0.05L s -
- - . | WReference Run2
0.04F - 1 +Riemann Fit --.;
C et +Broken Line Fit
003: N HE H H)
. tt event tracks ((PU)=50)
10_2IIIII\II\IIIII\II\II\II\IIIII\II\IIIII\I 0.02_ IIII‘ I IIIIIII‘ I II\I
-25-2-15-1-050 05 1 15 2 25 107 1 10 102
Simulated track n Simulated track p_ (GeV)

e Proper fits improve resolution significantly
e More information: CMS Detector Performance Note DP-2018/059

Matti Kortelainen (FNAL), CMS Patatrack project HOW2019, 2019-03-19 15/15

https://cds.cern.ch/record/2646774

