

The Case for Columnar Analysis (a two-part series)

Nick Smith, on behalf of the Coffea team Lindsey Gray, Matteo Cremonisi, Bo Jayatilaka, Oliver Gutsche, Nick Smith, Allison Hall, Kevin Pedro (FNAL); Andrew Melo (Vanderbilt); and others In collaboration with iris-hep members: Jim Pivarski (Princeton); Ben Galewsky (NCSA); Mark Neubauer (UIUC) **HOW 2019**

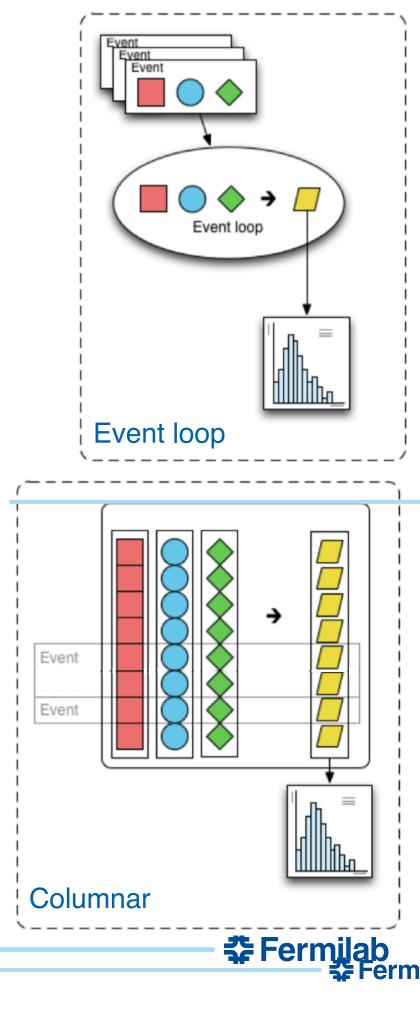
21 Mar. 2019

This manuscript has been authored by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy, Office of Science, Office of High Energy Physics.

Prologue: terminology

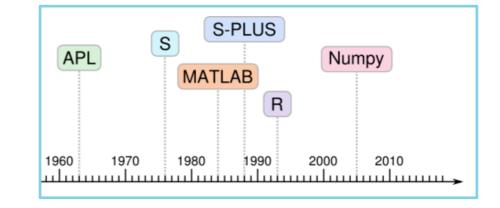
- Event loop analysis:
 - Load relevant values for a specific event into local variables
 - Evaluate several expressions
 - Store derived values
 - Repeat (explicit outer loop)

- Columnar analysis:
 - Load relevant values for many events into contiguous arrays
 - Nested structure (array of arrays) → flat content + offsets
 - This is how TTree works!
 - Evaluate several array programming expressions
 - Implicit inner loops
 - Store derived values



Prologue: technology

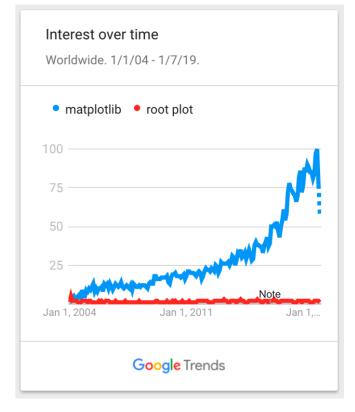
- Array programming:
 - Simple, composable operations
 - Extensions to manipulate offsets
 - Not declarative but towards goal
- Awkward array programming:
 - Extension of numpy syntax
 - Variable-length dimensions: "jagged arrays"
 - View SoA as AoS, familiar object syntax, e.g. p4.pt()
 - References, masks, other useful extensions
 - See <u>awkward</u>, talk by J. Pivarski at <u>ACAT2019</u>
- Coffea framework:
 - Prototype analysis framework utilizing columnar approach
 - Provide lookup tools, histogramming, other 'missing pieces' usually 1
 - See <u>fnal-column-analysis-tools</u>
 - Functionality will be factorized as it matures



Part I: Analyzer Experience

User experience

- Unsurprisingly, #1 user priority
 - Any working analysis code can scale up...for now
 - c.f. usage of PyROOT event loops despite dismal performance
 - (this will never change)
- Fast learning curve for scientific python stack
 - Excellent 'google-ability'
 - The quality and quantity of off-the-shelf components is impressive—many analysis tool implementations contain very little original code
 - Essentially all functions available in a vectorized form
- Challenge: re-frame problem in array programming primitives rather than imperative style (for+if)
 - User interviews conducted:
 - "its different, not necessarily harder"
 - "easier to read than write" ?!



Code samples I

- Idea of what Z candidate selection can look like
- Python allows very flexible interface, under-the-hood data structure is columnar

Selects good candidates (per-entry selection)

```
ee = ele.distincts()
mm = mu.distincts()
em = ele.cross(mu)
```

• Creates pair combinatorics (creates new pairs array, also jagged)

```
channels['ee'] = good_trigger & (ee.counts == 1) & (mu.counts == 0)
channels['mm'] = good_trigger & (mm.counts == 1) & (ele.counts == 0)
channels['em'] = good_trigger & (em.counts == 1) & (ele.counts == 1) & (mu.counts == 1)
```

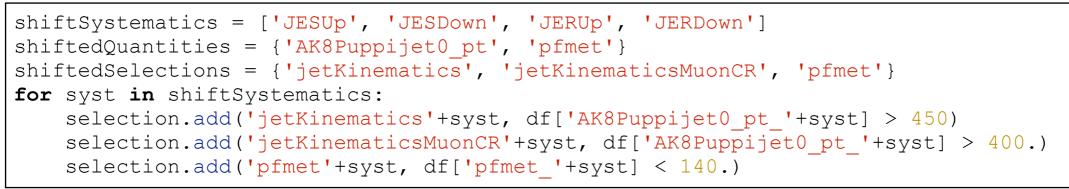
Selects good events, partitioning by type (per-event selection)

```
dileptons['ee'] = ee[(ee.i0.pdgId*ee.i1.pdgId == -11*11) & (ee.i0.p4.pt > 25)]
dileptons['mm'] = mm[(mm.i0.pdgId*mm.i1.pdgId == -13*13)]
dileptons['em'] = em[(em.i0.pdgId*em.i1.pdgId == -11*13)]
```

Selects good pairs, partitioning by type (per-entry selection on pairs array)

Code samples II

- Enable expressive abstractions without python interpreter overhead
 - e.g. storing boolean event selections from systematic-shifted variables in named bitmasks: each add() line operates on O(100k) events



- Columnar analysis is a <u>lifestyle brand</u>
 - Opens up scientific python ecosystem. e.g. interpolator from 2D ROOT histogram:

```
def centers(edges):
    return (edges[:-1] + edges[1:])/2
h = uproot.open("histo.root")["a2dhisto"]
xedges, yedges = h.edges
xcenters, ycenters = np.meshgrid(centers(xedges), centers(yedges))
points = np.hstack([xcenters.flatten(), ycenters.flatten()])
interp = scipy.interpolate.LinearNDInterpolator(points, h.values.flatten())
x, y = np.array([1,2,3]), np.array([3., 1., 15.])
interp(x, y)
```

• Don't want linear interpolation? Try one of several other options

Domain of applicability

- Domain of applicability depends on:
 - Complexity of algorithms
 - Size of per-event input state
- Examples:
 - JEC (binned parametric function): use binary search, masked evaluation: columnar ok
 - Object gen-matching, cross-cleaning: min(metric(pairs of offsets)): columnar ok
 - Deterministic annealing PV reconstruction: large input state, iterative: probably not
- How far back can columnar go?
 - Missing array programming primitives not a barrier, can always implement our own

Event Reconstruction 1 MB/evtAnalysis Objects 40-400 kB/evtFiltering & Projection (skimming & slimming) 1 kB/evtEmpirical PDFs (histograms) No event scalingComplex algorithms operating on large per- event input stateFewer complex algorithms, smaller per- event input stateFiltering & Projection (skimming & slimming) 1 kB/evtTrivial operations Trivial operations	Event loop			Columnar
Inter-event SIMD	1 MB/evt Complex algorithms operating on large per- event input state	40-400 kB/evt Fewer complex algorithms, smaller per-	(skimming & slimming) 1 kB/evt Few complex	(histograms) No event scaling

🗲 Fermilab

8 21 Mar. 2019 Nick Smith I Columnar analysis

Scalability

- Present a unified data structure to analysis function or class
 - Dataframe of awkward arrays
 - Decouple data delivery system from analysis system
- We can run real-world analyses at a range of scales
 - With home-grown and commercial scheduler software
- Lessons learned so far:
 - Fast time-to-backtrace as important as time-to-insight, keep in mind for analysis facilities!
 - Physics-driven bookkeeping (dataset names, cross sections, storage of derived data, etc.) is nontrivial in all cases, *needs to be decoupled*
 - Inherently higher memory footprint, solved by adjusting partitioning (chunking) scheme
 - Tradeoff with data delivery overhead

Data delivery system	Z peak wall-time throughput	Subjective 'ease of use'
uproot on laptop	~ 100 kHz	5/5
uproot + xrootd + multiprocessing	~ 250 kHz @ 10 cores *	5/5
uproot + condor jobs	Arbitrary	3/5
striped <u>system</u>	~ 10 MHz @ 100 cores	2/5
Apache spark	~ 1 MHz @ 100 cores **	4/5

9 21 Mar. 2019 Nick Smith I Columnar analysis

* constrained by bandwidth

** pandas_udf issue

Part II: Technical Underpinnings

Theoretical Motivation

- Aligned with strengths of modern CPUs
 - Simple instruction kernels aid pipelining, branch prediction, and pre-fetching
 - Event loop = input data controlling instruction pointer = less likely to exploit all three!
 - Unnecessary work is cheaper than unusable work
- Inherently SIMD-friendly
 - Event loop cannot leverage SIMD unless inter-event data sufficiently large
- In-memory data structure *exactly* matches on-disk serialized format
 - Event loop must transform data structure significant overhead
 - Memory consumption managed by chunking (event groups, or baskets)
- Array programming kernels form computation graph
 - Could allow query planning, automated caching, non-trivial parallelization schemes

The Coffea framework

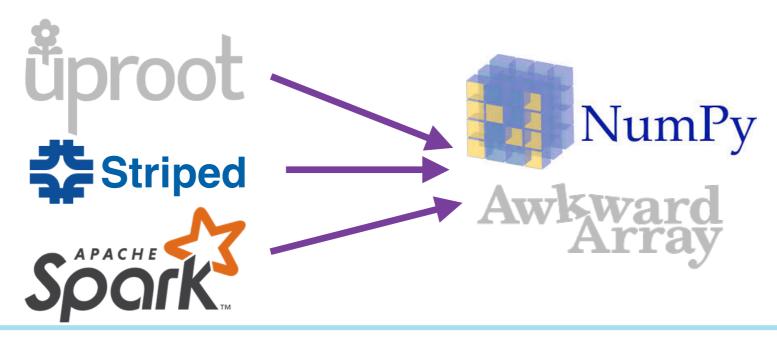
- Column Object Framework For Effective Analysis:
 - Prototype analysis framework utilizing columnar approach
 - Provides object-class-style view of underlying arrays
 - Implements typical recipes needed to operate on NANOAOD-like nTuples
 - One monolith for now: <u>fnal-column-analysis-tools</u>
 - Functionality will be factorized into targeted packages as it matures
- Realized using scientific python ecosystem
 - numpy: general-purpose array manipulation library
 - numba: uses IIvm to JIT-compile python code, understands numpy
 - Work ongoing to extend to awkward arrays as well
 - scipy: large library of specialized functions
 - cloudpickle: serialize arbitrary python objects, even function signatures
 - matplotlib: python visualization library

https://github.com/CoffeaTeam

🛠 Fermilab

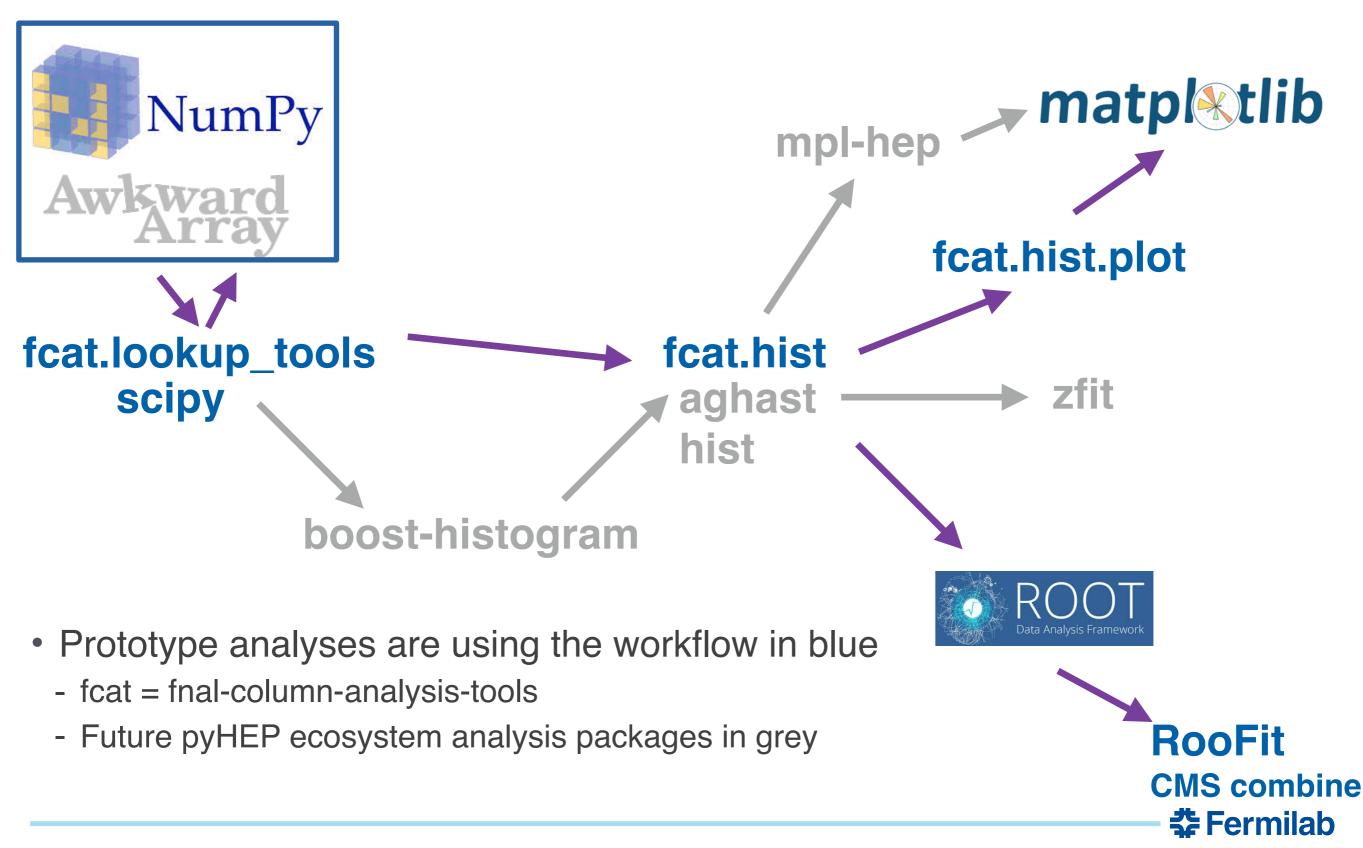
Factorized Data Delivery

- Uproot
 - Direct conversion from TTree to numpy arrays and/or awkward JaggedArrays
- <u>Striped</u>
 - NoSQL database delivers 'stripes': numpy arrays
 - Re-assemble awkward structure via object counts + content
 - memcached layer, python job scheduler, ~150 core cluster
 - Derived columns persistable
- <u>Spark</u>
 - Interface using vectorized UDF (user-defined function)
 - Currently restricted to intermediate pandas format (pyarrow UDF to be implemented)
 - Derived columns persistable



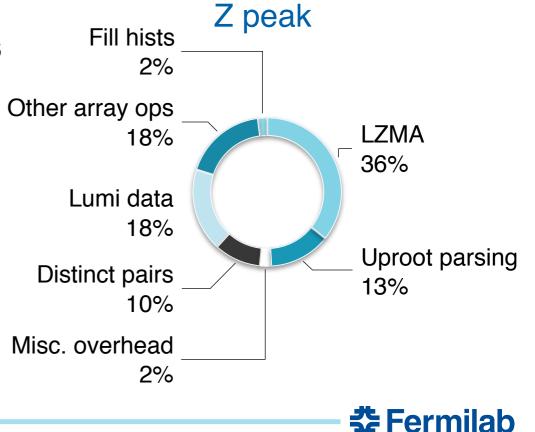
🛠 Fermilab

Package ecosystem



Performance

- Z peak benchmark
 - Includes many typical corrections: lumimask, PU correction, ID scale factors, flavor-categorized
 - 350 lines jupyter notebook, 25 columns accessed
 - 6 µs/evt/thread (125 kHz) wall time
 ROOT C++ TBranch::GetEntry(): ~1.5x faster
- Two prototype analyses
 - "end-to-end" = NanoAOD-like nTuple to templates
 - Varies from 30-150 µs/evt/thread
 - Already being used to steer analysis, present results in analysis group meetings
- Many inefficiencies known
 - Can be removed with further development in awkward and helper libraries



Future Directions

- As Coffea (& underlying libraries) matures, invite beta testers
 - I encourage everyone to try uproot+numpy now
- Target first release this summer
 - Two full analysis implemented
 - Data delivery mechanisms fully separated
 - User interface improvements and documentation
- Far future: analysis facility
 - This feeds towards the dream of a "short time-to-insight" "analysis as a service" facility
 - Tendering bids for additional buzzwords
 - Array programming allows easier construction of computation graphs
 - Query planning can detect common patterns and execute them once
 - By removing manual cache management, we can optimize throughput and storage
- First, lets see if we are happy and productive with the columnar approach
 - So far, the answer appears to be yes