
Nick Smith, on behalf of the Coffea team
Lindsey Gray, Matteo Cremonisi, Bo Jayatilaka, Oliver Gutsche, Nick Smith,
Allison Hall, Kevin Pedro (FNAL); Andrew Melo (Vanderbilt); and others

In collaboration with iris-hep members:
Jim Pivarski (Princeton); Ben Galewsky (NCSA); Mark Neubauer (UIUC)

HOW 2019
21 Mar. 2019

The Case for Columnar Analysis (a two-part series)

FERMILAB-SLIDES-19-007-T

This manuscript has been authored by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy,
Office of Science, Office of High Energy Physics.

21 Mar. 2019 Nick Smith | Columnar analysis12

From K. Pedro

Prologue: terminology

• Event loop analysis:
- Load relevant values for a specific event into local variables
- Evaluate several expressions
- Store derived values
- Repeat (explicit outer loop)

• Columnar analysis:
- Load relevant values for many events into contiguous arrays

• Nested structure (array of arrays) → flat content + offsets
- This is how TTree works!

- Evaluate several array programming expressions
• Implicit inner loops

- Store derived values

�2

12

From K. Pedro

Event loop

Columnar

21 Mar. 2019 Nick Smith | Columnar analysis

Prologue: technology

• Array programming:
- Simple, composable operations
- Extensions to manipulate offsets
- Not declarative but towards goal

• Awkward array programming:
- Extension of numpy syntax
- Variable-length dimensions: “jagged arrays”
- View SoA as AoS, familiar object syntax, e.g. p4.pt()
- References, masks, other useful extensions
- See awkward, talk by J. Pivarski at ACAT2019

• Coffea framework:
- Prototype analysis framework utilizing columnar approach
- Provide lookup tools, histogramming, other ‘missing pieces’ usually found in ROOT
- See fnal-column-analysis-tools

• Functionality will be factorized as it matures

�3

https://github.com/scikit-hep/awkward-array
https://indico.cern.ch/event/708041/contributions/3276200/attachments/1810057/2955674/pivarski-acat2019.pdf
https://github.com/CoffeaTeam/fnal-column-analysis-tools

21 Mar. 2019 Nick Smith | Columnar analysis

Part I:
Analyzer Experience

�4

21 Mar. 2019 Nick Smith | Columnar analysis

User experience

• Unsurprisingly, #1 user priority
- Any working analysis code can scale up…for now
- c.f. usage of PyROOT event loops despite dismal performance

• (this will never change)

• Fast learning curve for scientific python stack
- Excellent ‘google-ability’
- The quality and quantity of off-the-shelf components is

impressive—many analysis tool implementations contain very
little original code

- Essentially all functions available in a vectorized form

• Challenge: re-frame problem in array programming
primitives rather than imperative style (for+if)
- User interviews conducted:

• “its different, not necessarily harder”
• “easier to read than write” ?!

�5

https://indico.cern.ch/event/708041/contributions/3276200/attachments/1810057/2955674/pivarski-acat2019.pdf

21 Mar. 2019 Nick Smith | Columnar analysis

Code samples I

• Idea of what Z candidate selection can look like
• Python allows very flexible interface, under-the-hood data structure is columnar

�6

• Selects good candidates (per-entry selection)

• Creates pair combinatorics (creates new pairs array, also jagged)

• Selects good events, partitioning by type (per-event selection)

• Selects good pairs, partitioning by type (per-entry selection on pairs array)

21 Mar. 2019 Nick Smith | Columnar analysis

Code samples II

• Enable expressive abstractions without python interpreter overhead
- e.g. storing boolean event selections from systematic-shifted variables in named

bitmasks: each add() line operates on O(100k) events

�7

def centers(edges):
 return (edges[:-1] + edges[1:])/2

h = uproot.open("histo.root")["a2dhisto"]
xedges, yedges = h.edges
xcenters, ycenters = np.meshgrid(centers(xedges), centers(yedges))
points = np.hstack([xcenters.flatten(), ycenters.flatten()])
interp = scipy.interpolate.LinearNDInterpolator(points, h.values.flatten())
x, y = np.array([1,2,3]), np.array([3., 1., 15.])
interp(x, y)

• Don’t want linear interpolation? Try one of several other options

shiftSystematics = ['JESUp', 'JESDown', 'JERUp', 'JERDown']
shiftedQuantities = {'AK8Puppijet0_pt', 'pfmet'}
shiftedSelections = {'jetKinematics', 'jetKinematicsMuonCR', 'pfmet'}
for syst in shiftSystematics:
 selection.add('jetKinematics'+syst, df['AK8Puppijet0_pt_'+syst] > 450)
 selection.add('jetKinematicsMuonCR'+syst, df['AK8Puppijet0_pt_'+syst] > 400.)
 selection.add('pfmet'+syst, df['pfmet_'+syst] < 140.)

• Columnar analysis is a lifestyle brand
- Opens up scientific python ecosystem. e.g. interpolator from 2D ROOT histogram:

https://docs.scipy.org/doc/scipy/reference/interpolate.html
https://en.wikipedia.org/wiki/Lifestyle_brand

21 Mar. 2019 Nick Smith | Columnar analysis

Domain of applicability

• Domain of applicability depends on:
- Complexity of algorithms
- Size of per-event input state

• Examples:
- JEC (binned parametric function): use binary search, masked evaluation: columnar ok
- Object gen-matching, cross-cleaning: min(metric(pairs of offsets)): columnar ok
- Deterministic annealing PV reconstruction: large input state, iterative: probably not

• How far back can columnar go?
- Missing array programming primitives not a barrier, can always implement our own

-

�8

Event Reconstruction
1 MB/evt

Complex algorithms
operating on large per-

event input state

Inter-event SIMD

Analysis Objects
40-400 kB/evt

Fewer complex
algorithms, smaller per-

event input state

Filtering & Projection
(skimming & slimming)

1 kB/evt

Few complex
algorithms, O(1 column)

input state

Empirical PDFs
(histograms)

No event scaling

Trivial operations

Event loop Columnar

21 Mar. 2019 Nick Smith | Columnar analysis

Scalability
• Present a unified data structure to analysis function or class

- Dataframe of awkward arrays
- Decouple data delivery system from analysis system

• We can run real-world analyses at a range of scales
- With home-grown and commercial scheduler software

• Lessons learned so far:
- Fast time-to-backtrace as important as time-to-insight, keep in mind for analysis

facilities!
- Physics-driven bookkeeping (dataset names, cross sections, storage of derived data,

etc.) is nontrivial in all cases, needs to be decoupled
- Inherently higher memory footprint, solved by adjusting partitioning (chunking) scheme

• Tradeoff with data delivery overhead

�9

Data delivery system Z peak wall-time throughput Subjective ‘ease of use’

uproot on laptop ~ 100 kHz 5/5
uproot + xrootd + multiprocessing ~ 250 kHz @ 10 cores * 5/5

uproot + condor jobs Arbitrary 3/5
striped system ~ 10 MHz @ 100 cores 2/5

Apache spark ~ 1 MHz @ 100 cores ** 4/5

* constrained by bandwidth
** pandas_udf issue

http://lss.fnal.gov/archive/2018/conf/fermilab-conf-18-016-cd.pdf

21 Mar. 2019 Nick Smith | Columnar analysis

Part II:
Technical Underpinnings

�10

21 Mar. 2019 Nick Smith | Columnar analysis

Theoretical Motivation

• Aligned with strengths of modern CPUs
- Simple instruction kernels aid pipelining, branch prediction, and pre-fetching
- Event loop = input data controlling instruction pointer = less likely to exploit all three!
- Unnecessary work is cheaper than unusable work

• Inherently SIMD-friendly
- Event loop cannot leverage SIMD unless inter-event data sufficiently large

• In-memory data structure exactly matches on-disk serialized format
- Event loop must transform data structure - significant overhead
- Memory consumption managed by chunking (event groups, or baskets)

• Array programming kernels form computation graph
- Could allow query planning, automated caching, non-trivial parallelization schemes

�11

21 Mar. 2019 Nick Smith | Columnar analysis

The Coffea framework

• Column Object Framework For Effective Analysis:
- Prototype analysis framework utilizing columnar approach
- Provides object-class-style view of underlying arrays
- Implements typical recipes needed to operate on NANOAOD-like nTuples
- One monolith for now: fnal-column-analysis-tools

• Functionality will be factorized into targeted packages as it matures

• Realized using scientific python ecosystem
- numpy: general-purpose array manipulation library
- numba: uses llvm to JIT-compile python code, understands numpy

• Work ongoing to extend to awkward arrays as well
- scipy: large library of specialized functions
- cloudpickle: serialize arbitrary python objects, even function signatures
- matplotlib: python visualization library

Coffea
• COmpact Framework For Elaborate Algorithms

• Consist in:

- Custom-made version of CMSSW to produce private NanoAOD with
crab (this step may be needed to add information) =>
CoffeaHarvester

- List of output NanoAOD => coffeabeans

- Striped analysis code => CoffeaGrinder

- Fitting Ntuples => coffeapods

- Fitting code, interface with Combine => CoffeaMaker

18

https://github.com/CoffeaTeam

�12

https://github.com/CoffeaTeam/fnal-column-analysis-tools

21 Mar. 2019 Nick Smith | Columnar analysis

Factorized Data Delivery
• Uproot

- Direct conversion from TTree to numpy arrays and/or awkward JaggedArrays
• Striped

- NoSQL database delivers ‘stripes’: numpy arrays
• Re-assemble awkward structure via object counts + content

- memcached layer, python job scheduler, ~150 core cluster
- Derived columns persistable

• Spark
- Interface using vectorized UDF (user-defined function)
- Currently restricted to intermediate pandas format (pyarrow UDF to be implemented)
- Derived columns persistable

�13

Striped

https://github.com/scikit-hep/uproot
http://lss.fnal.gov/archive/2018/conf/fermilab-conf-18-016-cd.pdf
http://spark.apache.org/

21 Mar. 2019 Nick Smith | Columnar analysis

Package ecosystem

• Prototype analyses are using the workflow in blue
- fcat = fnal-column-analysis-tools
- Future pyHEP ecosystem analysis packages in grey

�14

RooFit
CMS combine

aghast
hist

boost-histogram

fcat.histfcat.lookup_tools
scipy

mpl-hep

fcat.hist.plot

zfit

21 Mar. 2019 Nick Smith | Columnar analysis

Performance

• Z peak benchmark
- Includes many typical corrections: lumimask, PU

correction, ID scale factors, flavor-categorized
- 350 lines jupyter notebook, 25 columns accessed
- 6 µs/evt/thread (125 kHz) wall time

• ROOT C++ TBranch::GetEntry(): ~1.5x faster
• Two prototype analyses

- “end-to-end” = NanoAOD-like nTuple to templates
- Varies from 30-150 µs/evt/thread
- Already being used to steer analysis, present results

in analysis group meetings
• Many inefficiencies known

- Can be removed with further development in
awkward and helper libraries

�15

Z peak
Fill hists

2%
Other array ops

18%

Lumi data
18%

Distinct pairs
10%

Misc. overhead
2%

Uproot parsing
13%

LZMA
36%

21 Mar. 2019 Nick Smith | Columnar analysis

Future Directions

• As Coffea (& underlying libraries) matures, invite beta testers
- I encourage everyone to try uproot+numpy now

• Target first release this summer
- Two full analysis implemented
- Data delivery mechanisms fully separated
- User interface improvements and documentation

• Far future: analysis facility
- This feeds towards the dream of a “short time-to-insight” “analysis as a service” facility

• Tendering bids for additional buzzwords
- Array programming allows easier construction of computation graphs

• Query planning can detect common patterns and execute them once
• By removing manual cache management, we can optimize throughput and storage

• First, lets see if we are happy and productive with the columnar approach
- So far, the answer appears to be yes

�16

