FERMILAB- SL|DES 19 007 T
ST . DEPARTMENT OF Office of

e Fermllab g ENERGY Science

The Case for Columnar Analysis (a two-part series)

Nick Smith, on behalf of the Coffea team (2
Lindsey Gray, Matteo Cremonisi, Bo Jayatilaka, Oliver Gutsche, Nick Smith, @

Allison Hall, Kevin Pedro (FNAL); Andrew Melo (Vanderbilt); and others

In collaboration with iris-hep members:
Jim Pivarski (Princeton); Ben Galewsky (NCSA); Mark Neubauer (UIUC)

This manuscript has been authored by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy,
21 Mar 201 9 Office of Science, Office of High Energy Physics.

Prologue: terminology

* Event loop analysis:
- Load relevant values for a specific event into local variables
- Evaluate several expressions
- Store derived values
- Repeat (explicit outer loop)

— e s a a s E E a E E E E E a a —— —,

* Columnar analysis:

- Load relevant values for many events into contiguous arrays

f
:
I
I
[
i
* Nested structure (array of arrays) — flat content + offsets i
- This is how TTree works! |
[
I
[
[
[
I
I
[
I
[
I
[
[

- Evaluate several array programming expressions
* Implicit innerloops
- Store derived values

[]
[]
[]
L]
! []
L]
[]
.

Columnar

3¢ Fermilab
2 21 Mar. 2019 Nick Smith | Columnar analysis

Prologue: technology

* Array programming: APL
- Simple, composable operations
- Extensions to manipulate offsets
- Not declarative but towards goal

1960 1970 1980

« Awkward array programming:
- Extension of numpy syntax
- Variable-length dimensions: “jagged arrays”
- View SoA as AoS, familiar object syntax, e.g. p4.pt()
- References, masks, other useful extensions
- See awkward, talk by J. Pivarski at ACAT2019

 Coffea framework:
- Prototype analysis framework utilizing columnar approach

- Provide lookup tools, histogramming, other ‘missing pieces’ usually 1

- See fnal-column-analysis-tools
* Functionality will be factorized as it matures

3 21 Mar. 2019 Nick Smith | Columnar analysis

S-PLUS

MATLAB

1990

Numpy

2000

2010

5
2

2= Fermilab

https://github.com/scikit-hep/awkward-array
https://indico.cern.ch/event/708041/contributions/3276200/attachments/1810057/2955674/pivarski-acat2019.pdf
https://github.com/CoffeaTeam/fnal-column-analysis-tools

Part I:
Analyzer Experience

3¢ Fermilab
4 21 Mar. 2019 Nick Smith | Columnar analysis

User experience

* Unsurprisingly, #1 user priority
- Any working analysis code can scale up...for now

- c.f. usage of PYROOT event loops despite dismal performance
* (this will never change)

Interest over time

Worldwide. 1/1/04-1/7/109.

 Fast learning curve for scientific python stack
- Excellent ‘google-ability’
- The quality and quantity of off-the-shelf components is

Impressive —many analysis tool implementations contain very
little original code

- Essentially all functions available in a vectorized form

Jan 1, 2004 Jan 1, 2011 Jan1,..

Google Trends
* Challenge: re-frame problem in array programming
primitives rather than imperative style (for+if)
- User interviews conducted:
* “its different, not necessarily harder”
- “easier to read than write” ?!
& Fermilab

5 21 Mar. 2019 Nick Smith | Columnar analysis

https://indico.cern.ch/event/708041/contributions/3276200/attachments/1810057/2955674/pivarski-acat2019.pdf

Code samples |

* |dea of what Z candidate selection can look like
* Python allows very flexible interface, under-the-hood data structure is columnar

ele = electrons|(electrons.pd4.pt > 20) &
(np.abs(electrons.pd4.eta) < 2.5) &

(electrons.cutBased >= 4)]

mu = muons| (muons.p4.pt > 20) &
(np.abs(muons.pd4.eta) < 2.4) &
(muons.tightId > 0)]

« Selects good candidates (per-entry selection)

ele.distincts()
mu.distincts()
ele.cross(mu)

ee
mm
em

* Creates pair combinatorics (creates new pairs array, also jagged)

channels['ee'] = good trigger & (ee.counts == 1) & (mu.counts == 0)
channels['mm'] = good trigger & (mm.counts == 1) & (ele.counts == 0)
channels['em'] = good trigger & (em.counts == 1) & (ele.counts == 1) & (mu.counts == 1)

» Selects good events, partitioning by type (per-event selection)

-11*11) & (ee.il0.p4.pt > 25)]
-13*13)]
-11*13)]

ee[(ee.i0.pdgld*ee.il.pdgId
mm[(mm.i0.pdgId*mm.il.pdgId
em[(em.i0.pdgId*em.il.pdgId

dileptons['ee']
dileptons['mm']
dileptons['em']

« Selects good pairs, partitioning by type (per-entry selection on pairs array)

3¢ Fermilab
6 21 Mar. 2019 Nick Smith | Columnar analysis

Code samples Il

* Enable expressive abstractions without python interpreter overhead
- e.g. storing boolean event selections from systematic-shifted variables in named

bitmasks: each add() line operates on O(100k) events

shiftSystematics = ['JESUp', 'JESDown', 'JERUp', 'JERDown']
shiftedQuantities = {'AK8PuppijetO pt', 'pfmet'}
shiftedSelections = {'jetKinematics', 'JetKinematicsMuonCR', 'pfmet'}

for syst in shiftSystematics:

selection.add('jetKinematicsMuonCR'+syst, df['AK8PuppijetO pt '+syst]
selection.add('pfmet'+syst, df['pfmet '+syst] < 140.)

selection.add('jetKinematics'+syst, df['AK8PuppijetO pt '+4+syst] > 450)

> 400.)

* Columnar analysis is a lifestyle brand

- Opens up scientific python ecosystem. e.g. interpolator from 2D ROOT histogram:

def centers (edges):
return (edges[:-1] + edges[1l:])/2

h = uproot.open ("histo.root") ["aZdhisto"]

xedges, yedges = h.edges

xcenters, ycenters = np.meshgrid(centers(xedges), centers (yedges))
points = np.hstack([xcenters.flatten (), ycenters.flatten()])

X, y = np.array([1l,2,3]), np.array([3., 1., 15.1)
interp(x, V)

interp = scipy.interpolate.LinearNDInterpolator (points, h.values.flatten())

« Don’t want linear interpolation? Try one of several other options

7 21 Mar. 2019 Nick Smith | Columnar analysis

2= Fermilab

https://docs.scipy.org/doc/scipy/reference/interpolate.html
https://en.wikipedia.org/wiki/Lifestyle_brand

Domain of applicability

* Domain of applicability depends on:
- Complexity of algorithms
- Size of per-event input state
* Examples:
- JEC (binned parametric function): use binary search, masked evaluation: columnar ok
- Object gen-matching, cross-cleaning: min(metric(pairs of offsets)): columnar ok
- Deterministic annealing PV reconstruction: large input state, iterative: probably not
* How far back can columnar go?
- Missing array programming primitives not a barrier, can always implement our own

Event loop Columnar
Event Reconstruction Analysis Objects Filtering & Projection Empirical PDFs
1 MB/ewvt 40-400 kB/evt (skimming & slimming) (histograms)
1 kB/evt No event scaling
Complex algorithms Fewer complex
operating on large per- algorithms, smaller per- Few complex Trivial operations
event input state event input state algorithms, O(1 column)
iInput state

Inter-event SIMD

3¢ Fermilab
8 21 Mar. 2019 Nick Smith | Columnar analysis

Scalability

* Present a unified data structure to analysis function or class

9

- Dataframe of awkward arrays

- Decouple data delivery system from analysis system

* We can run real-world analyses at a range of scales
- With home-grown and commercial scheduler software

Lessons learned so far:

- Fast time-to-backtrace as important as time-to-insight, keep in mind for analysis

facilities!

- Physics-driven bookkeeping (dataset names, cross sections, storage of derived data,
etc.) is nontrivial in all cases, needs to be decoupled

- Inherently higher memory footprint, solved by adjusting partitioning (chunking) scheme

 Tradeoff with data delivery overhead

21 Mar. 2019 Nick Smith | Columnar analysis

~ 100 kHz
~ 250 kHz @ 10 cores *
Arbitrary
~ 10 MHz @ 100 cores
~ 1 MHz @ 100 cores **

5/5
5/5
3/5
2/5
4/5

* constrained by bandwidth

** pandas_udf issue

2= Fermilab

http://lss.fnal.gov/archive/2018/conf/fermilab-conf-18-016-cd.pdf

Part II:
Technical Underpinnings

£& Fermilab
10 21 Mar. 2019 Nick Smith | Columnar analysis

Theoretical Motivation

* Aligned with strengths of modern CPUs
- Simple instruction kernels aid pipelining, branch prediction, and pre-fetching
- Event loop = input data controlling instruction pointer = less likely to exploit all three!
- Unnecessary work is cheaper than unusable work
* Inherently SIMD-friendly
- Event loop cannot leverage SIMD unless inter-event data sufficiently large

* In-memory data structure exactly matches on-disk serialized format
- Event loop must transform data structure - significant overhead
- Memory consumption managed by chunking (event groups, or baskets)

* Array programming kernels form computation graph
- Could allow query planning, automated caching, non-trivial parallelization schemes

3¢ Fermilab
11 21 Mar. 2019 Nick Smith | Columnar analysis

The Coffea framework

* Column Object Framework For Effective Analysis:
- Prototype analysis framework utilizing columnar approach
- Provides object-class-style view of underlying arrays
- Implements typical recipes needed to operate on NANOAQOD-like nTuples
- One monolith for now: fnal-column-analysis-tools

 Functionality will be factorized into targeted packages as it matures >
* Realized using scientific python ecosystem
- humpy: general-purpose array manipulation library C
- numba: uses llvm to JIT-compile python code, understands numpy '
« Work ongoing to extend to awkward arrays as well _

scipy: large library of specialized functions
cloudpickle: serialize arbitrary python objects, even function signatures
matplotlib: python visualization library

3¢ Fermilab
12 21 Mar. 2019 Nick Smith | Columnar analysis

https://github.com/CoffeaTeam/fnal-column-analysis-tools

Factorized Data Delivery
* Uproot

- Direct conversion from TTree to numpy arrays and/or awkward JaggedArrays
 Striped

- NoSQL database delivers ‘stripes’: numpy arrays
« Re-assemble awkward structure via object counts + content

- memcached layer, python job scheduler, ~150 core cluster
- Derived columns persistable
* Spark
- Interface using vectorized UDF (user-defined function)
- Currently restricted to intermediate pandas format (pyarrow UDF to be implemented)

- Derived columns persistable

L ag Striped ;
555"?

13 21 Mar. 2019 Nick Smith | Columnar analysis

2% Fermilab

https://github.com/scikit-hep/uproot
http://lss.fnal.gov/archive/2018/conf/fermilab-conf-18-016-cd.pdf
http://spark.apache.org/

Package ecosystem

oy MatpISHE
fcat.hist.plot

fcat.lookup_tools — ———— fcat.hist /

scipy \ /aghast — Zfit
hist \

boost-histogram

* Prototype analyses are using the workflow in blue

- fcat = fnal-column-analysis-tools \
- Future pyHEP ecosystem analysis packages in grey RooFit
CMS combine
3¢ Fermilab

14 21 Mar. 2019 Nick Smith | Columnar analysis

Performance

* Z peak benchmark

- Includes many typical corrections: lumimask, PU
correction, ID scale factors, flavor-categorized

- 350 lines jupyter notebook, 25 columns accessed
- 6 ps/evt/thread (125 kHz) wall time
 ROOT C++ TBranch::GetEntry(): ~1.5x faster
* Two prototype analyses
- “end-to-end” = NanoAOD-like nTuple to templates
- Varies from 30-150 ps/evt/thread

- Already being used to steer analysis, present results
In analysis group meetings

Z peak

j
7
-

Fill hists
2%

Other array ops

* Many inefficiencies known 18% LZMA
- Can be removed with further development in Lumi data 6%
awkward and helper libraries 18%

! ~ Uproot parsing

Distinct pairs 139%

10%
Misc. overhead
2%

£& Fermilab
15 21 Mar. 2019 Nick Smith | Columnar analysis

Future Directions

* As Coffea (& underlying libraries) matures, invite beta testers
- | encourage everyone to try uproot+numpy now

* Target first release this summer
- Two full analysis implemented
- Data delivery mechanisms fully separated
- User interface improvements and documentation

* Far future: analysis facility
- This feeds towards the dream of a “short time-to-insight
« Tendering bids for additional buzzwords
- Array programming allows easier construction of computation graphs

* Query planning can detect common patterns and execute them once
* By removing manual cache management, we can optimize throughput and storage

b1

analysis as a service” facility

* First, lets see if we are happy and productive with the columnar approach
- So far, the answer appears to be yes

£& Fermilab
16 21 Mar. 2019 Nick Smith | Columnar analysis

