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Computing Challenges
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HSF Community White Paper
arXiv:1712.06982

Energy frontier: HL-LHC

• 10× data vs. Run 2/3 → exabytes

• 200PU (vs. ~30PU in Run 2)

• CMS: 15× increase in pixel channels, 65×
increase in calorimeter channels
(similar for ATLAS)

Intensity frontier: DUNE

• Largest liquid argon detector ever designed

• ~1M channels, 1 ms integration time w/ 
MHz sampling → 30+ petabytes/year

 CPU needs for particle physics will increase by
more than an order of magnitude in the next decade

https://arxiv.org/abs/1712.06982


Development for Coprocessors
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• Large speed improvement from hardware accelerated coprocessors
o Architectures and tools are geared toward machine learning

Why (Deep) Machine Learning? 
• Common language for solving problems: simulation, reconstruction, analysis!
• Can be universally expressed on optimized computing hardware

(follow industry trends)

Option 1

re-write physics algorithms
for new hardware

Language: OpenCL, OpenMP, 
HLS, CUDA, …?

Hardware: FPGA, GPU

Option 2

re-cast physics problem as 
machine learning problem

Language: C++, Python
(TensorFlow, PyTorch,…)

Hardware: FPGA, GPU, ASIC



arXiv:1605.07678
DeepAK8

• ResNet-50: 25M parameters, 7B operations
• Largest network currently used by CMS:
o DeepAK8, 500K parameters, 15M operations

• Newer approaches w/ larger networks in development:
o Particle cloud (arXiv:1902.08570), ResNet-like (arXiv:1902.09914)
o Future: tracking (HEP.TrkX), HGCal clustering, …?

Deep Learning in Science and Industry
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https://arxiv.org/abs/1605.07678
https://arxiv.org/abs/1902.08570
https://arxiv.org/abs/1902.09914
https://heptrkx.github.io/


• Retrain ResNet-50 on publicly 
available top quark tagging 
dataset

o Convert jets into images 
using constituent pT, η, φ

→ New set of weights, 
optimized for physics

o Add custom classifier layers 
to interpret features from 
ResNet-50

Top Tagging w/ ResNet-50
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• ResNet-50 model that runs on FPGAs is “quantized”

o Tune weights to achieve similar performance

 State-of-the-art results vs. other leading algorithms

work in progress



• ResNet-50 can also classify neutrino events to reject cosmic ray backgrounds
• Use transfer learning: keep default featurizer weights, retrain classifier layers
• Events above selected w/ probability > 0.9 in different categories
• NOvA was the first particle physics experiment to publish a result obtained 

using a CNN (arXiv:1604.01444, arXiv:1703.03328)
• CNN inference already a large fraction of neutrino reconstruction time
 Prime candidate for acceleration with coprocessors

Image Recognition for Neutrinos
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https://arxiv.org/abs/1604.01444
https://arxiv.org/abs/1703.03328


• DNN training happens ~once/year/algorithm

o Cloud GPUs or new HPCs are good options

• Once DNN is in common use, inference 
will happens billions of times

o MC production, analysis, prompt 
reconstruction, high level trigger…

Why Accelerate Inference?
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• Inference as a service:

o Minimize disruption to existing computing model

o Minimize dependence on specific hardware

• Performance metrics:

o Latency (time for a single request to complete)

o Throughput (number of requests per unit time)



Coprocessors: An Industry Trend
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Catapult/BrainwaveSpecialized coprocessor hardware
for machine learning inference

FPGA

FPGA

FPGA

ASIC

ASIC

FPGA+ASIC



Microsoft Brainwave

9Kevin PedroHOW2019

• Provides a full service at scale
(more than just a single co-processor)

• Multi-FPGA/CPU fabric accelerates
both computing and network

• Weight retuning available: retrain supported 
networks to optimize for a different problem

Brainwave supports:
• ResNet50
• ResNet152
• DenseNet121
• VGGNet16

Catapult_ISCA_2014.pdf

https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/Catapult_ISCA_2014.pdf


• Event-based processing

o Events are very complex with hundreds of products

o Load one event into memory, then execute all algorithms on it

 Most applications not a good fit for large batches, which are required for 
best GPU performance

Particle Physics Computing Model
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• New CMSSW feature called ExternalWork:

o Asynchronous task-based processing

o Non-blocking: schedule other tasks while waiting for external processing

• Can be used with GPUs, FPGAs, cloud, …

o Even other software running on CPU that wants to schedule its own tasks

 Now demonstrated to work with Microsoft Brainwave!

Accessing Heterogeneous Resources

11Kevin Pedro

External 
processing

CMSSW 
module acquire()

FPGA, 
GPU, etc.

produce()

HOW2019



• Services for Optimized Network Inference on Coprocessors

o Convert experimental data into neural network input

o Send neural network input to coprocessor using communication protocol

o Use ExternalWork mechanism for asynchronous requests

• Currently supports:

o gRPC communication protocol

 Callback interface for C++ API in development
→ wait for return in lightweight std::thread

o TensorFlow w/ inputs sent as TensorProto (protobuf)

• Tested w/ Microsoft Brainwave service (cloud FPGAs)

• gRPC SonicCMS repository on GitHub

SONIC in CMSSW
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https://github.com/hls-fpga-machine-learning/SonicCMS/tree/kjp/1020_azureml_ew


Cloud vs. Edge

13Kevin PedroHOW2019

• Cloud service has latency

• Run CMSSW on Azure cloud machine
→ simulate local installation of FPGAs
(“on-prem” or “edge”)

• Provides test of ultimate performance

• Use gRPC protocol either way

Network input

CPU farm

FPGAPrediction

CMSSW

Heterogeneous Cloud Resource

CPU

FPGA

Heterogeneous Edge Resource

CPU

CMSSW



Logarithmic x-axis Linear x-axis

• Remote: cmslpc @ FNAL to Azure (VA), ‹time› = 60 ms

o Highly dependent on network conditions

• On-prem: run CMSSW on Azure VM, ‹time› = 10 ms

o FPGA: 1.8 ms for inference

o Remaining time used for classifying and I/O

SONIC Latency
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mean ± std. dev. “violin” plot

• Run N simultaneous processes, all sending requests to 1 BrainWave service
• Processes only run JetImageProducer from SONIC → “worst case” scenario
o Standard reconstruction process would have many other non-SONIC modules

• Only moderate increases in mean, standard deviation, and long tail for latency
o Fairly stable up to N = 50

SONIC Latency: Scaling
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“violin” plot

• Each process evaluates 5000 jet images in series
• Remarkably consistent total time for each process to complete
o Brainwave load balancer works well

• Compute inferences per second as (5000 ∙ N)/(total time)
• N = 50 ~fully occupies FPGA:
o Throughput up to 600 inferences per second (max ~650)

SONIC Throughput
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• Above plots use i7 3.6 GHz, TensorFlow v1.10
• Local test with CMSSW on cluster @ FNAL:
o Xeon 2.6 GHz, TensorFlow v1.06
o 5 min to import Brainwave version of ResNet-50
o 1.75 sec/inference subsequently

CPU Performance

17Kevin PedroHOW2019

SONIC latency w/ Brainwave



• Above plots use NVidia GTX 1080, TensorFlow v1.10
• GPU directly connected to CPU via PCIe
• TF built-in version of ResNet-50 performs better on GPU than quantized 

version used in Brainwave

GPU Performance
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SONIC latency w/ Brainwave

SONIC throughput w/ Brainwave



• *CPU performance depends on:
o clock speed, TensorFlow version, # threads (=1 here)

• **GPU caveats:
o Directly connected to CPU via PCIe – not a service
o Performance depends on batch size & optimization of ResNet-50 network

• SONIC achieves:
 175× (30×) on-prem (remote) improvement in latency vs. CMSSW CPU!
 Competitive throughput vs. GPU, w/ single-image batch as a service!

Performance Comparisons
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Type Note Latency [ms] Throughput [img/s]

CPU*
Xeon 2.6 GHz 1750 0.6
i7 3.6 GHz 500 2

GPU**
batch = 1 7 143
batch = 32 1.5 667

Brainwave
remote 60 660
on-prem 10 (1.8 on FPGA) 660



• Particle physics experiments face extreme computing challenges
o More data, more complex detectors, more pileup

• Growing interest in machine learning for reconstruction and analysis
o As networks get larger, inference takes longer

• FPGAs are a promising option to accelerate neural network inference
o Can achieve order of magnitude improvement in latency over CPU
o Comparable throughput to GPU, without batching
 Better fit for event-based computing model

• SONIC infrastructure developed and tested
o Compatible with any service that uses gRPC and TensorFlow

 Paper with these results in preparation
• Thanks to Microsoft for lots of help and advice!
o Azure Machine Learning, Bing, Project Brainwave teams
o Doug Burger, Eric Chung, Jeremy Fowers, Kalin Ovtcharov,

Andrew Putnam

Summary
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• Continue to translate particle physics algorithms into machine learning

o Easier to accelerate inference w/ commercial coprocessors

• Develop tools for generic model translation

o E.g. graph NNs used for HEP.TrkX and other projects

• Explore broad offering of potential hardware

o Google TPUs, Xilinx ML suite on AWS, Intel OpenVINO, …

• Continue to build infrastructure and study scalability/cost

o Adapt SONIC to handle other protocols, other network architectures and 
ML libraries, other experiments (e.g. neutrinos)

Continuing Work
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• A single FPGA can support many CPUs → cost-effective

o SONIC throughput results indicate 1 FPGA for 100–1000 CPUs running 
realistic processes (many algorithms, only some ML inferences)

• Install small “edge” instances at T1s and T2s

o Can also install a dedicated instance for CMS HLT farm at CERN

A Vision of the Future
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“Edge” instanceFeynman Computing Center, Fermilab



Backup



Jet Substructure
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Jet Images
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Setup:

• TBB controls running modules

• Concurrent processing of multiple events

• Separate helper thread to control external

• Can wait until enough work is buffered 
before running external process

External Work in CMSSW (1)
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Acquire:

• Module acquire() method called

• Pulls data from event

• Copies data to buffer

• Buffer includes callback to start next 
phase of module running

External Work in CMSSW (2)
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Work starts:

• External process runs

• Data pulled from buffer

• Next waiting modules can run
(concurrently)

External Work in CMSSW (3)

28Kevin PedroHOW2019



Work finishes:

• Results copied to buffer

• Callback puts module back into queue

External Work in CMSSW (4)
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Produce:

• Module produce() method is called

• Pulls results from buffer

• Data used to create objects to put into 
event

External Work in CMSSW (5)
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