

Variational quantum eigensolver of interacting bosons with NISQ devices

Andy C. Y. Li APS March Meeting 2019 6 March 2019

This document has been authored by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy, Office of Science, Office of High Energy Physics.

Variational quantum eigensolver (VQE)

Boson encoding by qubits

Goal: encode a truncated boson Hilbert space in qubits

Position basis binary encoding

Ref: Phys. Rev. Lett. 121, 110504

$$x = \Delta \frac{N-1}{2} = |1 \dots 11\rangle_q$$

$$|x = \Delta (\frac{N-1}{2}-1)\rangle = |1 \dots 10\rangle_q$$

$$|x = \Delta (-\frac{N-1}{2})\rangle = |0 \dots 00\rangle_q$$

Number basis binary encoding

$$|n = N\rangle = |1 \dots 11\rangle_q$$

$$|n = 2\rangle = |0 \dots 10\rangle_q$$

$$|n = 1\rangle = |0 \dots 01\rangle_q$$

$$|n = 0\rangle = |0 \dots 00\rangle_q$$

Hardware efficient trial state's ansatz

1Q-gate layer Entanglement-gate layers $|0\rangle$ Ansatz consists only of native gates supported by $|0\rangle$ the hardware $\vec{\theta}^{0}$ $|\psi(\vec{ heta})
angle$ $\vec{\theta}^{n_l}$ L_{n_l} L_1 e.g. $R_{\rm Y}(\theta)$, $R_{\rm Z}(\theta)$ and CZ for Rigetti's devices $|0\rangle$ $R_{Y}(\theta_{6})$ $R_{Z}(\theta_{7})$ $R_{Z}(\theta_{1})$ $R_{Y}(\theta_{0})$ Example: 3 qubits with $R_{Z}(\theta_{3})$ $R_{Y}(\theta_{8})$ $R_{Z}(\theta_{9})$ $R_{Y}(\theta_{10})$ $\mathsf{U}(\vec{\theta})$ $R_{Y}(\theta_{2})$ $R_{Z}(\theta_{11})$ 1 entanglement layer $R_{Z}(\theta_{5})$ $R_{Y}(\theta_{4})$ $R_{Y}(\theta_{12})$ $R_{Z}(\theta_{13})$

🚰 Fermilab

Cost function for ground state & excited states

 $|\psi(\theta)\rangle$

Ground-state cost function = trial state's energy $C_0 = \langle \psi(\vec{\theta}) | H | \psi(\vec{\theta}) \rangle$

Ground state: $|\psi_0\rangle = \underset{|\psi(\vec{\theta})\rangle}{\operatorname{argmin}} C_0$

1st-excited state: $|\psi_1\rangle = \operatorname{argmin} C_1$

🛠 Fermilab

1st-excited state cost function: $C_1 = \langle \psi(\vec{\theta}) | H | \psi(\vec{\theta}) \rangle + \epsilon | \langle \psi_0 | \psi(\vec{\theta}) \rangle |^2$

Overlap with the ground state

2nd-excited state cost function: $C_2 = \langle \psi(\vec{\theta}) | H | \psi(\vec{\theta}) \rangle + \epsilon | \langle \psi_0 | \psi(\vec{\theta}) \rangle |^2 + \epsilon | \langle \psi_1 | \psi(\vec{\theta}) \rangle |^2$

Proof-of-principle expt. – Rabi model using Rigetti's device

Rabi Hamiltonian: two-level system (TLS) coupled to a photon mode $H = \omega a^{\dagger}a + \frac{\Omega}{2}\sigma_z + g(a^{\dagger} + a)\sigma_x$

Number-basis binary encoding: photon mode truncated to up to 3 photons

$$\begin{split} |n=0\rangle &= |00\rangle_q \ |n=1\rangle = |01\rangle_q \\ |n=2\rangle &= |10\rangle_q \ |n=3\rangle = |11\rangle_q \end{split}$$

Optimizers

Optimization algorithm	
Simultaneous Perturbation Stochastic Approximation (SPSA)	Stochastic
Nelder-Mead	Gradient-free
Constrained Optimization BY Linear Approximations (COBYLA)	Gradient-free
Bound Optimization BY Quadratic Approximation (BOBYQA)	Gradient-free
Covariance Matrix Adaptation Evolution Strategy (CMA-ES)	Evolutionary algorithm: stochastic & gradient-free

Optimizer with noisy device

Experimental result

Summary

- Variational quantum eigensolver for bosons
 - Low-energy spectrum
- Proof-of-principle experiment of Rabi model
 - 3-qubit implementation on Rigetti's device
 - Ground state and 1st excited state
- Future works
 - Trial state's ansatz
 - Error mitigation techniques
 - Lattice models: Rabi lattice, Holstein model...

Panagiotis Spentzouris

Alex Macridin

Andy C. Y. Li

10