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Abstract: We consider aspects of tree and one-loop behavior in a generic 4d EFT of

massless scalars, fermions, and vectors, with a particular eye to the high-energy limit of

the Standard Model EFT at operator dimensions 6 and 8. First, we classify the possi-

ble Lorentz structures of operators and the subset of these that can arise at tree-level in

a weakly coupled UV completion, extending the tree/loop classification through dimen-

sion 8 using functional methods. Second, we investigate how operators contribute to tree

and one-loop helicity amplitudes, exploring the impact of non-renormalization theorems

through dimension 8. We further observe that many dimension 6 contributions to helicity

amplitudes, including rational parts, vanish exactly at one-loop level. This suggests the

impact of helicity selection rules extends beyond one loop in non-supersymmetric EFTs.
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1 Introduction

The discovery of a Standard Model-like Higgs has driven considerable progress in our

understanding of four-dimensional chiral effective field theories (EFTs) of scalars, fermions,

and vectors, with a particular view to their relevance in describing the effective field theory

of the Standard Model. Recent highlights include the ability to systematically enumerate

operators in generic EFTs [1, 2], and the revival of functional techniques [3–5] for matching

such EFTs to their weakly coupled UV completions [6–14]. Exploration of these EFTs

has revealed considerable structure, imbued by physics both above them (via patterns in

operator coefficients coming from the UV completion) and within them (via both mixing

between EFT operators and their relation to physical observables). Characterizing this

structure is vital, both as a practical matter of effectively interpreting experimental data

and as a principled matter of understanding quantum field theories relevant to the real

world.

Physical effects in perturbative EFTs are typically organized by a simultaneous expan-

sion in loops and operator dimensions, with the nominal complexity growing considerably

at each order. The precision attainable by the LHC and proposed future colliders provides

potential access to effects arising at higher order in both expansion parameters within the

Standard Model EFT, bringing tens of thousands of operators (and their ensuing radiative

correlations) into play.

Amidst this vast landscape of possibilities, attempts to develop a more comprehensive

understanding of the phenomenological effects of these EFTs have led to a focus on the
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scattering amplitudes to which they contribute. Like renormalizable gauge theories, the

lagrangian of an EFT can be somewhat cumbersome and is full of hidden redundancies, such

as the ability to redefine fields without affecting S-matrix elements (which is responsible

for the pernicious equation of motion relations between different lagrangian operators).

The S-matrix is, by contrast, rather simple. Considering the higher dimension tree- and

loop-level contributions to helicity amplitudes results in powerful ‘non-interference’ [15]

and ‘non-renormalization’ [16] theorems, with direct relevance to the structure of helicity

amplitudes in the Standard Model in the high energy limit (i.e. above the electroweak

scale). The former illuminates LHC sensitivity to new physics in diboson channels, while

the latter explains the surprising pattern of zeroes [17] appearing in the one-loop matrix of

anomalous dimensions for dimension 6 operators in the Standard Model EFT [18–23], and

more broadly illustrates the pattern of possible loop effects within the EFT itself. Progress

has also been recently made in the formulation of EFT amplitudes for both massless and

massive particles without reference to operators [24–27].

An orthogonal technique to help organize the many operators of an effective field

theory is to consider the subset which can be generated at tree- and loop-level in a weakly

coupled UV completion, see, e.g., [28–30]. Although the utility of this classification relies

on perturbativity of the UV completion and must be used with care [31–33], it nonetheless

can provide useful guidance in estimating the relative size of some physical effects and

often has intriguing overlap with classification schemes based on non-interference and non-

renormalization theorems.

In both cases, the majority of progress in understanding the structure of generic EFTs

has been made at the lowest nontrivial operator dimension, i.e. dimension 6. However, the

consequences of non-interference theorems, the richness of possible UV physics, and the

anticipated high level of experimental precision all necessitate the further exploration of

effects arising dimension 8. Some progress has been made in this direction (see e.g. [27, 34–

38]), but the understanding of non-interference theorems, non-renormalization theorems,

and the tree/loop classification up to dimension 8 is still incomplete.

In this paper, we seek to obtain a more refined picture of the structure of generic EFTs

by combining the two approaches: we study the effects of tree- and loop-level generated

operators in the space of tree- and loop- level helicity amplitudes, commenting throughout

on issues relevant to the Standard Model above the electroweak scale and extending results

to dimension 8 wherever possible. We begin by enumerating the operators themselves;

Section 2 details a simple method for enumerating the different Lorentz structures in a

general EFT of scalars, fermions and vectors. This reproduces classifications arising from

Hilbert series techniques [1, 2], but has the advantage of involving the imposition of only

four straightforward criteria. In Section 3 we develop a new approach to the tree/loop

classification of operator coefficients by using functional matching techniques to obtain a

subset of the operators of §2 which may be generated at tree-level in perturbative UV com-

pletions, extending the classification to dimension 8. In Section 4 we review and extend the

respective works of [15] and [16] on operators’ tree- and loop- level contributions to helicity

amplitudes. Among other things, we find that the dimension 6 parts of many one loop

helicity amplitudes vanish entirely (including the rational terms), despite the existence of
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relevant Feynman diagrams. This is in contrast to the dimension 4 parts of one loop helic-

ity amplitudes, whose nonzero rational parts violate all tree-level helicity selection rules,

and suggests that the effects of helicity selection rules in non-supersymmetric EFTs may

often extend beyond one loop. In Section 5 we review some aspects of the combined effects

of the patterns described in §3 and §4, to better understand the observable manifestations

of weakly coupled new physics. We summarize our main conclusions in Section 6.

2 Classification of higher dimensional operators

In this manuscript we consider a gauge theory of massless scalars (φ), fermions (ψ), and

vectors (V ). First of all, we wish to determine the possible Lorentz structures of higher

dimensional operators in the lagrangian. For this purpose, it is easiest to consider the

operators’ constituent fields and derivatives in irreducible representations of the Lorentz

group

φ, ψα, ψ̄α̇, Fαβ , F̄α̇β̇ , Dαα̇ , (2.1)

which respectively represent a scalar field, left and right handed chiral fermions, the left and

right handed components of the field strength tensor, and the gauge covariant derivative. As

usual, the undotted and dotted indices transform in the defining reps of SU(2)L×SU(2)R,

and Fαβε
αβ = F̄α̇β̇ε

α̇β̇ = 0. Moreover, the objects in (2.1) respectively excite massless

particles of definite helicity, h, which we write as

φ, ψ+, ψ−, V +, V −, V ±, (2.2)

where the respective helicities

h = 0,
1

2
,−1

2
, 1,−1,±1, (2.3)

are defined for outgoing particles. We will rely heavily on the correspondence between the

fields enumerated in (2.1) and the helicity eigenstates they excite to classify the scattering

processes to which a given operator contributes.

The forms of the dimension 4 operators in the EFT lagrangian are well known. Sup-

pressing Lorentz indices, as well as those belonging to any internal symmetries, we write

the schematic lagrangian

L4 = −F 2 − F̄ 2 + iψ̄Dψ + (Dφ)2 − λφ4 − yφψψ + h.c., (2.4)

where D = ∂ + igA, and g, y, and λ stand for the strength of various gauge, Yukawa, and

scalar quartic interactions. Furthermore, we make the simplifying assumption that there

are no superrenormalizable dimension-three interactions, i.e., no scalar cubic interactions,

so as to avoid introducing another mass scale which would complicate the subsequent

analysis. Importantly, the Standard Model, in the unbroken phase, does not have such an

interaction.

At higher dimensions, it is possible to form many more Lorentz invariant operators;

their enumeration, taking into account the internal symmetries of the fields, is a recently
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solved problem [1, 2]. For the purposes of simply classifying the possible Lorentz structures

of operators, it suffices to consider all products of the objects in (2.1) that satisfy the

following three criteria:

1. The product contains more than one field, otherwise it is trivially a total derivative.

2. The product contains an even number of dotted and undotted indices. This is neces-

sary to form a Lorentz invariant out of the product of fields and derivatives, because

all invariant tensors of the Lorentz group (εαβ , εα̇β̇ , δαβ , δα̇
β̇

) contract said indices in

pairs.

3. If the product of fields and derivatives contains exactly two (un)dotted indices be-

fore contraction, they cannot belong to a field strength tensor F̄α̇β̇ (Fαβ), as, after

contraction, F̄α̇β̇ε
α̇β̇ = Fαβε

αβ = 0.

The resulting classes of operators for dimension 6 and 8 are shown in Figures 1 and 2

respectively. The operators are arranged by two coordinates,

n = Number of fields, (2.5)∑
h = The sum of helicities of the particles excited by the n fields. (2.6)

Note that any vector which may be excited by a covariant derivative is ignored in the

definition of these two quantities; we briefly consider such effects when constructing higher

point amplitudes in Section 4.1. The coordinates (n,
∑
h) are half of the sum and difference

of the holomorphic weights introduced in [16].

When considering their effect on S-matrix elements, we can entirely eliminate some

classes of operators that satisfy criteria (1), (2) and (3). Dimension d operators proportional

to a marginal equation of motion

δS4

δφ
= Dαα̇Dαα̇φ+ λφ3 + yψψ + y†ψ̄ψ̄, (2.7)

δS4

δψ̄α̇
= Dαα̇ψ

α − y†φψ̄α̇, (2.8)

δS4

δψα
= Dαα̇ψ̄

α̇ − yφψα, (2.9)

δS4

δV αα̇
= −Dβ̇

αF̄β̇α̇ −D
β
α̇Fαβ + ψ̄α̇ψα + φ

↔
Dαα̇φ, (2.10)

(where S4 =
∫
L4), or a Bianchi identity

0 = +Dβ̇
αF̄β̇α̇ −D

α̇
βFαβ , (2.11)

do not contribute to S-matrix elements at dimension d order [28]. Therefore, the Lorentz

structures

Dαα̇Dαα̇φ,Dαα̇ψ
α, Dαα̇ψ̄

α̇, Dα̇
βFαβ , D

β̇
αF̄β̇α̇, (2.12)

can always be eliminated in favor of products of more fields. Allowing for use of integration

by parts, one may show that a term of the form (2.12) is always present in any two or three

field operator containing covariant derivatives, leading to a fourth criterion
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φ2D4

ψψ̄D3

FF̄D2

φ4D2

ψ2ψ̄2

ψψ̄φ2D φ6

F 2D2

F 2φ2

Fψ2φ
ψ4

Fψψ̄D
ψ2φD2

Fφ2D2

F 3

ψ2φ3

2 3 4 5 6

0

1

2

3

n

∑
h

Figure 1. The classes of dimension six operators in the space of the number of fields contained,

n, and the total helicity
∑
h of the particles they excite. We truncate the diagram about its axis

of symmetry
∑
h = 0. Reflect the diagram in the n-axis by Hermitian conjugation to obtain the

full set of operators. Operators in red arise at tree level in a weakly coupled renormalizable UV

completion, as defined in §3. Operators in blue and black are generated at loop level, but only

those in blue are renormalized by tree-level operators. Those in gray can be expressed in terms of

the others by equations of motion, when considering their effects in helicity amplitudes.

4. If the product contains three fields or fewer, it cannot contain covariant derivatives.

for enumerating a full set of operator classes that contribute to helicity amplitudes. Classes

of operators satisfying (1), (2), and (3), but not (4), are shown in gray in Figures 1 and 2.

We will always implicitly work in a basis where such gray operators have been exchanged

for lower derivative operators.

Note, as an aside, that the absence of derivatives in three field operators which con-

tribute to the S-matrix can be understood more simply from the structure of the 3-point

helicity amplitude: three particle special kinematics imply either all angle bracket or all

square bracket products vanish, and the amplitude is proportional to either 〈12〉a〈23〉b〈31〉c

or [12]a[23]b[31]c, for some integer a, b, c. It thus contains no momentum factors pi ∼ |i〉[i|
that would arise from a partial derivative.

Using the results of [1], we have checked explicitly that all of the classes of operators

satisfying the above four criteria are populated at even dimensions up to 12 in the Standard

Model. Having enumerated the various operator classes in a generic EFT, we now turn to

characterizing the relative sizes of effects they induce, as encoded in the loop order of both

the Wilson coefficients of the operators themselves and the helicity amplitudes to which

they contribute.

3 The tree vs. loop classification of operator coefficients

Any given UV completion of the generic EFT of §2 will generate non-trivial structure in the

Wilson coefficients of the EFT operators. In weakly coupled UV completions for example,

it is possible to classify the higher dimensional operators of the EFT by whether they
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F 2D4

F 3D2

FF̄D4,

φ2D6,

ψψ̄D5

F 2F̄D2, φ2FD4,

ψ2φD4, Fψψ̄D3

F 2F̄ 2, FF̄φ2D2,

φ4D4, F̄ψ2φD2,

FF̄ψψ̄D, ψψ̄φ2D3,

Fψ̄2φD2, ψ2ψ̄2D2

F 2φ2D2, Fψ2φD2,

ψ4D2, F 2ψψ̄D

F 4

Fφ4D2, ψ2φ3D2,

Fψψ̄φ2D, ψ3ψ̄φD,

F 2ψ̄2φ, Fψ2ψ̄2

F 3φ2, F 2ψ2φ, Fψ4

φ6D2, ψψ̄φ4D,

ψ2ψ̄2φ2

F 2φ4, Fψ2φ3, ψ4φ2

ψ2φ5

φ8

2 3 4 5 6 7 8

0

1

2

3

4

n

∑
h

Figure 2. The classes of dimension eight operators. Operators in red arise at tree level in a weakly

coupled renormalizable UV completion, as defined in §3. Operators in blue and black are generated

at loop level, but only those in blue are renormalized by tree-level operators. Those in gray can be

expressed in terms of the others by equations of motion, when considering their effects in helicity

amplitudes.

are potentially generated at tree- or loop-level when integrating out the heavy dynamics.1

1Although the tree/loop classification is well-defined in weakly coupled UV completions, it may break

down in strongly coupled theories and/or in the presence of super-renormalizable operators, see e.g. [31]

for examples. Care must also be taken when truncating operator bases using the tree/loop classification, as

operators at a given loop order in general do not form a vector subspace [32] and truncating by anticipated

loop order may introduce ambiguities [33]. Here we do not advocate for any particular application or

interpretation of the tree/loop classification, but simply extend it where applicable.
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The tree/loop classification of operators has been systematically explored for operators of

dimension 6 in e.g. [29, 30, 39]. In this section, we compactly reproduce existing work

on the tree/loop classification at dimension 6 and explicitly extend the classification to

dimension 8 by applying functional methods to the problem.

We consider a generic renormalizable UV theory of heavy scalars Φ, Weyl fermions Ψ

and Ψ̄, and vectors V, all of mass M . Up to quadratic order in the heavy fields, it has the

schematic lagrangian

LUV =− 1

2

(
Φ Ψ Ψ̄ Vµ

)

D2 +M2 + λφ2 yψ yψ̄ 0

yψ M + yφ −i /D 0

yψ̄ i /D M + yφ 0

0 0 0
−gµν(D2+M2+gφ2)+

DνDµ − [Dµ, Dν ]




Φ

Ψ

Ψ̄

Vν



−
(
Φ Ψ Ψ̄ Vµ

)
yψψ + yψ̄ψ̄ + λφ3

yφψ

yφψ̄

gψ̄σµψ + gφ
↔
Dµφ

+ O({Φ,Ψ, Ψ̄,V}3) (3.1)

≡− 1

2
HTQH−HTJ + O(H3) (3.2)

where, again, g, y and λ stand for gauge, Yukawa, and scalar quartic coupling strengths.

We arrange into vectors the heavy fields H and their light sources J. We do not expand

the interactions that are cubic or higher in the heavy fields, as they only contribute to

operators of dimension greater than 8, whose form we do not consider in detail here. We

have made two assumptions on the form of the linear and quadratic interactions of the

heavy fields: one, there are no superrenormalizable interactions between the heavy and

light scalars;2 two, there is no mixing between the heavy vector field and the scalars. Aside

from these two assumptions, the form (3.1) is completely generic in the following sense.

Any other heavy-light field mixing can be diagonalized away without loss of generality

(including that between heavy and light vectors [40]). Note also that the form of the terms

quadratic in the heavy vector can be fixed by requiring perturbative unitarity of its tree

level amplitudes [6].

The form of the heavy vector terms in (3.1) can be obtained via the spontaneous break-

ing of a gauge boson lagrangian. Thus, our classification of renormalizable UV lagrangians

aligns with that of [29, 30, 39].

We perform the tree-level matching of the UV lagrangian onto that of the EFT func-

tionally (see e.g. [6]). Namely, we solve the equations of motion of the heavy fields for the

classical field solution

Hc = −Q−1J + O(J2), (3.3)

and substitute it back into the lagrangian to give the full set of tree-level operators

LEFT =
1

2
JTQ−1J + O(J3), (3.4)

2This simplifies the expressions in (3.1). Including a scalar cubic would not generate any new classes of

tree-level operators up to and including d = 8.
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which we expand to the desired order in 1
M .

Up to dimension 6 (O( 1
M2 )),

LEFT =
1

2M2
JT


1 0 0 0

0 M i /D 0

0 −i /D M 0

0 0 0 1

 J + O(
1

M3
), (3.5)

encoding the familiar result that all tree-level operators at dimension six are the product

of two currents J . The tree-level classes of operators are shown in red in Figure 1, and are

exactly those which do not contain field strengths F/F̄ (such field strengths being absent

from the currents J).

Working up to dimension 8, and splitting Q = M + D into parts that contain mass

factors, and covariant derivative/light field factors respectively,

LEFT = −1

2
JTM−1DM−1(1−DM−1 +DM−1DM−1)J + O(

1

M5
) . (3.6)

Similarly to dimension 6, this expression contains all classes of dimension 8 operators that

do not contain field strengths. However, some operators containing field strengths are also

generated at tree-level via

1. the [Dµ, Dν ] factor in D in (3.6) (arising from the heavy vector’s quadratic action)

acting on a light field. This generates the operator classes Fφ4D2, Fφ2ψψ̄D, Fψ2ψ̄2,

and conjugates.

2. operators in (3.6) which can be expressed entirely in terms of lower derivative oper-

ators via the equations of motion of the light fields, and which also contain a factor

/D /D ∼ D2 + σµνFµν (which is equivalent to ∼ D2εαβ + Fαβ or D2εα̇β̇ + F̄α̇β̇). This

generates the operator classes Fψψ̄φ2D, Fψ2φ3, and conjugates.

3. operators in (3.6) which cannot be expressed entirely in terms of lower derivative

operators via equations of motion of the light fields, but with multiple covariant

derivatives which may be anti-commuted. Here, the question is a basis dependent

one: the existence of the operator with an extra field strength depends on arrange-

ment of derivatives in the basis operator for the operator class with more derivatives

(e.g. the choice of whether one uses an operator containing /D /D or D2). In the

interest of generality, we therefore also include F 2φ4 and Fψ4 (and conjugates) as

operators which can be generated at tree level. In any event, when it comes to con-

sidering the operators’ basis independent effects in helicity amplitudes, there exist

local interactions V +(ψ+)4, (V +)2φ4 and conjugates with tree-level coefficients.

The tree-level operator classes at dimension 8 are shown in red in Figure 2. Whereas

no operators containing F are tree-level at dimension 6, at dimension 8 operators with one

F can be generated at tree level, other than Fψ4, which depends on the choice of basis

and whose effects can be accounted for by operators of the class ψ4D2. Operators with
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two or more field strengths cannot be generated except for F 2φ4, which also depends on

the choice of basis. All operators with no field strengths can be generated at tree level.

Note that there is, in principle, yet another way to generate tree-level dimension 8

operators indirectly, although it does not generate any new classes of operator beyond those

described above. This happens when we use equations of motion to reduce dimension 6

operators that are proportional to D2φ, /Dψ, /Dψ̄, DF , or DF̄ , into operators with fewer

derivatives. Consider a field redefinition (which does not change the physics of our EFT)

of dimension 6 order of a field f

f → f +
X

M2

LEFT → LEFT +
X

M2

δS4

δf
+
X2

M4

δ2S4

δf2
+

X

M2

δS6

δf
+ . . . . (3.7)

where S4 and S6 denote the dimension 4 and dimension 6 part of the effective action and the

“. . . ” denote operators of dimension higher than 8. In the second line, the first extra term

reduces a dimension 6 operator into operators with fewer derivatives. We must check that

performing this shift does not inadvertently generate new classes of tree-level dimension 8

operators (necessarily containing field strengths) via the last two terms.

First note that for the dimension 8 operator generated in this way to be tree level, we

must have that X be part of a tree level dimension 6 operator, so that X
M2

δS4
δf eliminates

a tree-level dimension 6 operator. We know that all tree-level dimension 6 operators do

not have field strengths (and contain at least four fields). This means that — to tree-level

order — there is no field strength in X, nor δS4
δf , nor δS6

δf . Therefore the last two terms

in (3.7) contain no field strengths, and do not generate any new classes of dimension 8

operator at tree-level.

4 The tree vs. loop classification of helicity amplitudes

Thus far we have considered the possible tree/loop structure of Wilson coefficients for

operators in generic EFTs, generated by physics above the cutoff of the EFT and germane

when the UV completion is perturbative. Equally important – and wholly insensitive to

the unknown details of UV physics – is the tree/loop structure of helicity amplitudes within

the EFT itself.

4.1 Tree-level helicity amplitudes

We begin by reviewing [15, 16] the contribution of the EFT operators to tree-level dimension

d processes, which we define as the part of an n-leg helicity amplitude which scales with

energy E as Ed−n. A dimension d process is built out of the vertices arising from operators’

contact interactions. If each operator has dimension di, then

d− 4 =
∑

vertices

(di − 4), (4.1)

and the dimension d processes thus potentially contains an arbitrary number of marginal

interactions. As per the treatment of the operators in §2, it is useful to classify these

– 9 –



A B C

(
nA∑
hA

)
+

(
−2

0

)
+

(
nB∑
hB

) (
nC∑
hC

)
=

=
± ∓

Figure 3. The tree-level rule for constructing amplitudes in (n,
∑
h) space [16].

processes by the number, n, and the total helicity,
∑
h, of the external legs, as these

coordinates combine very simply when constructing amplitudes on-shell.

Each tree-level process C (that is not a simple contact interaction) will have a pole

in at least one factorisation channel whose residue is proportional to the product of two

smaller helicity amplitudes A and B, as shown in Figure 3. The total number of external

legs of C is two fewer than that of A and B (having removed an external leg from each

to form an internal line); their total helicity is the sum of the external helicities of A and

B (having removed a leg of equal and opposite helicity from A and B to form an on-shell

internal line). Thus, by knowing the values n and
∑
h of all contact interactions — which

are simply related to the operators of the lagrangian — one may recursively build a map

of all possible tree-level processes in these coordinates.

Consider first the dimension 4 processes. All three-point processes, namely

φψ+ψ+, φφV +, ψ+ψ−V +, V +V +V −, (4.2)

and conjugates, have
∑
h = ±1.3 From 2 three-point interactions, one might naively

construct the following processes at (n,
∑
h) = (4, 2):

φψ+ψ+V +, ψ+ψ−V +V +, φφV +V +, V +V +V +V − . (4.3)

However, these are identically zero on shell [16]. In fact, the only non-zero process at (4, 2)

is the all-positive fermion amplitude (ψ+)4. This holds, furthermore, when accounting for

the two four-point contact interactions at dimension 4: the scalar quartic, and the Yang-

Mills four vector vertex both contribute exclusively to (4, 0) at four-point (the latter is also

simply zero in an appropriate choice of gauge, and otherwise accounted for by the process

comprising two 3-point Yang-Mills vertices). Similarly the only dimension 4 tree-level

amplitude at (4,−2) is (ψ−)4.

Due to the absence of contact interactions at 5-point and above, all n ≥ 5 dimension 4

tree-level processes may be constructed recursively from those at 3- and 4-point, using the

tree-level rule of Figure 3; we mark their possible coordinates with circles in the left panel

of Figure 4. Note that the majority of four or higher point tree-level processes lie on or

within the dashed cone |
∑
h| = n − 4, whose boundary demarcates, amongst others, the

3This is fixed by the dimension of the process. A ∼ 〈12〉a〈23〉b〈31〉c implies a+b+c = −
∑
h = d−n = 1,

whereas [12]a[23]b[31]c has
∑
h = 1.
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∑
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∑
h|
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4

n

∑
h

3 4 5 6 7

−4

−3

−2

−1

1

2

3

4

Tree and irrational 1-

loop effects of star op-

erator

Figure 4. Dimension 4 (left) and dimension 6 (right) amplitudes. Squares denote possible contact

insertions of operators. The starred contact insertion at (5,−1) may only contribute to tree-level

and cut constructible one-loop level (barring exceptional amplitudes) processes within the blue

cone.

location of the all-gluon maximally helicity violating amplitudes. The processes outside the

cone, shown in grey in Figure 4, necessarily factorise into the 4-point all-plus or all-minus

fermion amplitude, and we term these ‘exceptional amplitudes’. Note that such processes

in the Standard Model are suppressed by the product of up- and down-type Yukawas.

The observation that nearly all of the dimension 4 amplitudes lie on or within the

dashed ‘MHV cone’ of Figure 4 drives many of the following statements in this paper

regarding the tree- and one-loop structures in the space of (n,
∑
h).

For higher dimensional processes, by contrast, we are unaware of any such helicity

selection rules causing constructed tree-level amplitudes to vanish on-shell. Consider the

contribution of a given dimension d > 4 operator to dimension d processes. By power

counting (4.1), they comprise a contact insertion of the dimension d operator in question,

plus an optional arbitrary number of dimension 4 vertices. The process which is simply

a contact insertion of the operator has the same (n,
∑
h) coordinate as the operator, as

defined in Section 2. Adding dimension 4 interactions, by the tree level rule of Figure 3,

leads to a succession of processes with larger n that lie within a cone, whose apex is at the

original (n,
∑
h) coordinate of the operator. We depict such a cone in blue for the starred

operator in Figure 4. This cone contains all tree-level dimension d amplitudes proportional

to the Wilson coefficient of the operator in question [15]. We note here that the helicity

amplitude generated when a covariant derivative in a local operator excites a vector is the

same as that generated when the external leg on which the covariant derivative acts is

dressed with a dimension 4 gauge vertex, and these effects are therefore included within

the cone.

– 11 –



Figure 4 represents a map of the possible tree-level helicity amplitudes of dimension

6 processes. Square markers show the locations of contact insertions of the operators of

Figure 1. Note how, in the absence of helicity selection rules, the processes fill the space

up to the line |
∑
h| = n, which marks the location of the all plus and all minus vector

amplitudes (which, at dimension 6, are necessarily proportional to the F 3 coefficient).

The situation is identical in higher dimensions. The map of dimension d > 6 (for even

d) amplitudes is the same, other than that there are no three-point amplitudes, and there

are more square markers denoting contact interactions (which lie in a region bounded by

the lines n = 4, |
∑
h| = n, and |

∑
h| = d− n).

With the tree-level maps in hand, we turn to construct the one-loop amplitudes in the

general (massless) EFT.

4.2 One-loop helicity amplitudes

Consider the one-loop contributions of a given dimension d operator to dimension d pro-

cesses. We reprise the argument in [16] after reviewing some aspects of generalised unitarity

methods. Applied explicitly to the operator classification of §2, this leads us to extend the

results of [16] to operators of dimension 8.

Any one-loop amplitude can be written in the form [41]

O1-loop =

∫
dDl

(2π)D
A1-loop =

∫
dDl

(2π)D
N (l)

D̄1D̄2 . . . D̄N
(4.4)

where the numerator N (l) is a polynomial function of the loop momentum, l, and external

momenta and polarisations. The scalar propagator denominators D̄i = (l + qi)
2, for some

linear combinations of external particle momenta qi.

The four-dimensional part of the numerator N (l) (obtained when its constituent d-

dimensional objects are replaced by their four dimensional components) can be parametrised

by [41]

N (l)|4d =
∑
i1

(a(i1) + ã(i1; l))
∏
j 6=i1

Dj

+
∑
i1,i2

(b(i1, i2) + b̃(i1, i2; l))
∏

j 6=i1,i2

Dj

+
∑
i1,i2,i3

(c(i1, i2, i3) + c̃(i1, i2, i3; l))
∏

j 6=i1,i2,i3

Dj

+
∑

i1,i2,i3,i4

(d(i1, i2, i3, i4) + d̃(i1, i2, i3, i4; l))
∏

j 6=i1,i2,i3,i4

Dj . (4.5)

In (4.5), the sums run over distinct subsets, of the appropriate size, of the integers 1 to

N . Di are the denomiators D̄i when restricted to four dimensions. The Passarino-Veltman

coefficients a, b, c, and d are rational functions of the external momenta and polarisations;

their counterparts with tildes — the spurious terms — are rational functions of the external

momenta, polarisations, and the loop momentum l, which vanish upon integration with

respect to the measure
∫

d4l. d̃, for instance, is necessarily a single term of the form

d̃(i1, i2, i3, i4; l) = d̃(i1, i2, i3, i4)(l · n4) (4.6)
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where d̃(i1, i2, i3, i4) is independent of the loop momentum, and n4 is a four vector orthog-

onal to qi2 − qi1 , qi3 − qi1 , and qi4 − qi1 . The number of l-dependent structures in ã, b̃, and

c̃ that are necessary to parametrise the l dependence of N (l) is, however, a function of the

order of N (l) [42].

Performing the integration in D = 4−2ε dimensions, we obtain the Passarino-Veltman

decomposition [43]

O1-loop =
∑
i1

a(i1)I1(i1) +
∑
i1,i2

b(i1, i2)I2(i1, i2) +
∑
i1,i2,i3

c(i1, i2, i3)I3(i1, i2, i3)

+
∑

i1,i2,i3,i4

d(i1, i2, i3, i4)I4(i1, i2, i3, i4) +R, (4.7)

written in terms of the scalar integrals

Ik(i1, . . . , ik) =

∫
ddl

(2π)d
1

D̄i1 . . . D̄ik

. (4.8)

The rational part R of O1-loop is a rational function of the external momenta and polari-

sations. It arises in the above decomposition from integration over the D − 4 dimensional

parts of the numerator N , as well as over ratios of Di

D̄i
resulting from the substitution (4.5)

[44]. The rational parts considered in §4.3 are of the former type.

One defines k = 2, 3, 4 particle cuts of the integrand of (4.4) by restricting it to the

locus of (complex) 4d loop momenta l for which k internal propagators are on-shell:

cuti1...ikA
1-loop = A1-loopDi1 . . . Dik

∣∣∣
Di1

=...=Dik
=0
. (4.9)

When applied to the decomposition (4.5), we obtain

cuti1i2A1-loop =(b(i1, i2) + b̃(i1, i2; l)) +
∑
i3

(c(i1, i2, i3) + c̃(i1, i2, i3; l))
1

Di3

+
∑
i3,i4

(d(i1, i2, i3, i4) + d̃(i1, i2, i3, i4; l))
1

Di3Di4

, (4.10)

cuti1i2i3A1-loop =(c(i1, i2, i3) + c̃(i1, i2, i3; l)) +
∑
i4

(d(i1, i2, i3, i4) + d̃(i1, i2, i3, i4; l))
1

Di4

,

(4.11)

cuti1i2i3i4A1-loop =(d(i1, i2, i3, i4) + d̃(i1, i2, i3, i4; l)). (4.12)

If one is able to evaluate the left hand sides of (4.10–4.12) at sufficiently many different

values of l, one may then uniquely solve for the coefficients b, c, d, b̃, c̃, and d̃ by linear

algebra.

Consider now the two particle cut of a dimension d process, which contains a single

insertion of a dimension d operator. The integrand, under the conditions that internal

legs i1 and i2 be on-shell, factorises into a product of tree level processes — one of them

dimension d, one of them dimension 4:

cuti1i2A1 loop = Atree, dim dAtree, dim 4. (4.13)
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=

±

±

∓

∓

Figure 5. The one-loop level rule for constructing amplitudes in (n,
∑
h) space [16].

Moreover, the (n,
∑
h) coordinates of the one-loop process are fixed by those of the fac-

torised tree-level pieces, as per Figure 5.

Assume that both Atree, dim d and Atree, dim 4 are 4-point or greater, i.e. (qi1−qi2)2 6≡ 0.

Unless it is an exceptional amplitude, Atree, dim 4 lives within the ‘MHV cone’ |
∑
h| ≤

n − 4 whose apex is (4, 0). By the loop level construction rule of Figure 5, this implies

cuti1i2A1 loop is within the cone whose apex is the coordinates of Atree,dim d. By the tree

level considerations of Section 4.1, Atree,dim d, and by transitivity cuti1i2A1 loop, is within

the cone of the contact insertion of the dimension d operator, see again the blue cone in

Figure 4.

Consider the opposite case: a A1 loop which is outside the cone of the dimension d

operator present within the amplitude. In the absence of exceptional amplitudes in its

factorisation channels

cuti1i2A1 loop = 0, ∀i1, i2 where (qi1 − qi2)2 6≡ 0. (4.14)

All three and four particle cuts may be written without loss of generality as

cuti1i2i3A1-loop = (cuti1i2A1-loop)Di3

∣∣∣
Di1

=Di2
=Di3

=0
(4.15)

cuti1i2i3i4A1-loop = (cuti1i2A1-loop)Di3Di4

∣∣∣
Di1

=Di2
=Di3

=Di4
=0

(4.16)

where we choose i1 and i2 such that |i1 − i2| mod N > 1 and thus (qi1 − qi2)2 6≡ 0 (i.e. we

use a two particle cut of non-adjacent internal legs). In turn, this implies

cuti1i2i3A1 loop = 0, ∀i1, i2, i3, (4.17)

cuti1i2i3i4A1 loop = 0, ∀i1, i2, i3, i4. (4.18)

By the now homogeneous equations (4.10–4.12), we conclude

b(i1, i2) = b̃(i1, i2; l) = 0 ∀i1, i2, (qi1 − qi2)2 6≡ 0 (4.19)

c(i1, i2, i3) = c̃(i1, i2, i3; l) = 0 ∀i1, i2, i3, (4.20)

d(i1, i2, i3, i4) = d̃(i1, i2, i3, i4; l) = 0 ∀i1, i2, i3, i4. (4.21)
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The integrated amplitude is then

O1-loop =
∑
i1

a(i1)I1(i1) +
∑

i1,i2,(qi1−qi2 )2≡0

b(i1, i2)I2(i1, i2) +R

= R,

the last equality following because, in dimensional regularisation, scaleless tadpoles and

bubbles vanish.4

As was shown by this method in [16], a dimension d operator’s one-loop contributions

to processes outside its cone — exceptional cases aside — are UV finite. Thus, as a rule,

a dimension d operator only renormalises other dimension d operators within its cone (i.e.

it renormalises those operators that can provide a contact insertion of a counterterm to

absorb the divergence). A glance at the operator distributions in Figure 2, for example,

shows many dimension 8 operators are out of reach of each other, and that the well-known

sparsity of the anomalous dimension matrix at dimension 6 persists at dimension 8, as it

should too for even higher dimensions.

A simple corollary of [16] is that an operator’s one-loop contributions outside its cone

— exceptional cases aside — are not just UV finite, but entirely rational. In short this is

because the dimension 4 tree-level amplitude, obtained by cutting the one-loop amplitude in

any scattering channel, always vanishes due to the aforementioned helicity selection rules.

By the Cutkosky rules, this means that all discontinuities in the one-loop amplitude’s

kinematic invariants must vanish, which suffices to require all irrational parts to vanish

[45].

The absence of irrational parts has significant phenomenological implications. The

absence of UV divergences means there are no logarithmic enhancement effects of the form

log(ME ), due to running down from some UV scale M to that of the scattering process

in the EFT, E. The lack of IR divergences similarly rules out enhancements of the form

log(Em), m being some small mass scale or IR cutoff. Further irrationalites in purely finite

processes, proportional to the logarithm of some ratio of kinematic invariants, could have

also enhanced the process in particular corners of phase space.

Thus, all logarithmic enhancements proportional to a given higher dimensional oper-

ator’s coefficient are absent in many helicity amplitudes where one would expect them,

diagrammatically, to be present. In the following subsection, we examine how the rational

parts of the one-loop amplitude often also confound expectations, and vanish.

4.3 Absent rational terms at dimension 6

Of the possible four-point helicity amplitudes, few receive both a dimension 4 and dimension

6 contribution at tree level. The possibilities are enumerated in Table 1. In short, 4-point

processes with at least one external vector have contributions of only one dimension: (4, 0)

processes with vectors have only a dimension 4 tree-level piece; (4,±2) processes only a

4Even in other regularisation schemes, where the scaleless integrals are non-zero, they are still rational

in the external momenta.
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(4, 0) process d. 4 d. 6

V +V +V −V − Y(n.A.) N

V +V −ψ+ψ− Y N

V +V −φφ Y N

V +ψ−ψ−φ Y N

ψ+ψ+ψ−ψ− Y Y

ψ+ψ−φφ Y Y

φφφφ Y Y

(4, 2) process d. 4 d. 6

V +V +V +V − N Y(n.A.)

V +V +ψ+ψ− N Y(n.A.)

V +V +φφ N Y

V +ψ+ψ+φ N Y

ψ+ψ+ψ+ψ+ Y Y

Table 1. A list of the (n, h) = (4, 0) and (4, 2) processes, whether they contain dimension 4 (d. 4)

and dimension 6 (d. 6) pieces, and whether this occurs exclusively for non-Abelian vectors (n.A.).

dimension 6 piece. This means that there is no interference term between the two when

calculating event rates [15].

The processes in Table 1 that are absent at tree level are also purely rational at one

loop. To see this quickly, consider the most general Passarino-Veltman decomposition of

a massless 4-point one-loop amplitude in dimension regularisation (i.e. ignoring tadpoles

and scaleless bubbles),

O1-loop =
∑

x∈{s,t,u}

(
bxI2(x) + cxI

1m
3 (x)

)
+ dI0m

4 (s, t) +R . (4.22)

The UV divergences must vanish, as there is no tree-level process involving a counterterm

to absorb them. Thus the coefficients of the UV divergent bubbles I2(x) must be zero.

The IR divergences must vanish, as there is no tree-level contribution which could be

dressed with soft or collinear particles to absorb them (in cross sections) [15, 46]. Thus

the coefficients of the one-mass triangles I1m
3 (x) and the zero mass box I4(s, t) also vanish,

leaving a purely rational piece.

The rational parts of one-loop processes are relatively ubiquitous. As we have de-

scribed, they are typically present in any one-loop amplitude, regardless of whether helicity

selection rules forbid the existence of irrational parts. For example, all 4-point dimension 4

processes absent at tree-level generically have a non-zero dimension 4 rational contribution

at one-loop.5 Consequently, the effects of tree-level helicity selection rules in the Stan-

dard Model extend no further than one loop, where they influence the matrix of one-loop

anomalous dimensions. On these grounds, one might expect that all dimension 6 processes

that are forbidden at tree level also possess nonzero rational parts at one loop. However,

we find by explicit calculation that this is not the case. A substantial number of dimension

6 processes that are forbidden at tree level are also entirely zero at one loop despite the

naive existence of relevant Feynman diagrams. This suggests that the impact of helicity

selection rules extends beyond one loop for dimension 6 processes.

5One loop dimension 4 contributions to V +V +V +V +, V +V +V +V −, V +V +ψ+ψ−, V +V +φφ were com-

puted in e.g. [47–49]. Although the one loop dimension 5 rational contributions to V +ψ+ψ+φ are computed

in [50], we are unaware of a corresponding result in the literature for the one loop dimension 4 part, but

we have verified that the rational part for this amplitude is nonzero as well.
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Whether the rational parts of said one-loop, dimension-6 helicity amplitudes are nonzero

is of particular relevance to the radiative fate of non-interference theorems involving di-

mension 4 and dimension 6 tree level amplitudes, as mentioned above [15]. Insofar as the

(4, 2) dimension 4 amplitudes with external vectors have a nonzero rational part at one

loop, the non-interference theorems can be violated by the interference between one-loop

dimension 4 amplitudes and tree level dimension 6 amplitudes. However, it is worth in-

quiring whether the same can be said for the interference between one-loop dimension 6

amplitudes and tree level dimension 4 amplitudes. These could be the leading source of

radiative violations of the non-interference theorems if the dimension-6 Wilson coefficients

are sizeable.

To this end, we calculate explicitly the rational contributions of (4, 0) dimension 6

operators to (4, 0) processes with external vectors, namely,

V +V +V −V −, V +V −φφ, V +V −ψ+ψ−, V +ψ−ψ−φ, (4.23)

as well as

V +V +V +V −, V +V +ψ+ψ−, (4.24)

which also lack a tree-level dimension 6 part in a purely Abelian theory, see Table 1.

We do so in four simplified models described in Appendix A — two Abelian and two

non-Abelian — with the help of FORM [51], FeynArts [52], and FormCalc [53], employing

FormCalc’s default prescription of a γ5 that anticommutes with D-dimensional gamma

matrices (our results should, however, be scheme independent). We summarise the results

here in condensed Abelian and non-Abelian tables 2, where ‘×’ denotes no diagram6 in

either model of the type considered, ‘0’ denotes zero rational parts in models with diagrams,

and ‘R’ denotes a non-zero rational part in at least one of the models.

Most of the many zeroes in Table 2 can be understood from the possible Lorentz

structures of the rational parts. The rational part cannot have a trivial denominator, as

this would imply the existence of a dimension 6 contact term that could contribute to the

process considered. Instead, the rational parts must contain poles. Such Lorentz structures

consistent with the overall dimension 6 scaling of the rational part are, up to conjugates:

a) two 3-point dimension 5 vertices (V +V +φ, V +ψ+ψ+, and conjugates) connected by a

single propagator, specifically:

V +V +(φ+ φ)V −V − = V +V +V −V − with pole in (p[V +
1 ] + p[V +

2 ])2, (4.25)

V +ψ+(ψ+ + ψ−)ψ−V − = V +V −ψ+ψ− with pole in (p[V +] + p[ψ+])2, (4.26)

φV +(V + + V −)V −φ = V +V −φφ with pole in (p[V +] + p[φ])2, (4.27)

φV +(V + + V −)ψ−ψ− = V +ψ−ψ−φ with pole in (p[V +] + p[φ])2, (4.28)

6This means specifically no diagram for the process before the helicities of the external particles are

fixed.
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Table 2. One-loop contributions of various dimension 6 operators to certain helicity amplitudes.

The upper left and right quadrants correspond to contributions of tree-level dimension 6 operators

to |h| = 0 and select |h| = 2 amplitudes, respectively; the lower left and right quadrants correspond

to contributions of loop-level or exceptional dimension 6 operators to |h| = 0 and select |h| = 2

amplitudes. Here × means there’s no diagram, 0 a vanishing contribution, and R a non-vanishing

rational contribution.

Non-Abelian

(4, 0) (4, 2)

V
+
V

+
V
−
V
−

V
+
V
−
ψ

+
ψ
−

V
+
V
−
φ
φ

V
+
ψ
−
ψ
−
φ

V
+
V

+
V

+
V
−

V
+
V

+
ψ

+
ψ
−

(4, 0)

ψ2ψ̄2 × 0 × 0∗ × R

φ4D2 × × 0 × × ×
φ2ψψ̄D × 0 0 0 × R

(4, 2)

Fψ2φ × R R R × 0

F 2φ2 R 0 R R 0∗ 0∗

ψ4 × 0 × 0 × 0

(4,−2)

F̄ ψ̄2φ × R R R × 0

F̄ 2φ2 R 0 R R 0 0

ψ̄4 × 0 × R × 0

Abelian

(4, 0) (4, 2)

V
+
V

+
V
−
V
−

V
+
V
−
ψ

+
ψ
−

V
+
V
−
φ
φ

V
+
ψ
−
ψ
−
φ

V
+
V

+
V

+
V
−

V
+
V

+
ψ

+
ψ
−

ψ2ψ̄2 × 0 × 0∗ × 0

φ4D2 × × 0 × × ×
φ2ψψ̄D × 0 0 0 × 0

Fψ2φ × R R R × 0

F 2φ2 R 0 R R 0 0

ψ4 × 0 × 0 × 0

F̄ ψ̄2φ × R R R × 0

F̄ 2φ2 R 0 R R 0 0

ψ̄4 × 0 × R × 0

or, for non-Abelian sectors only of a theory, b) a 3-point dimension 6 vertex (V +V +V +,

and conjugate) connected with a dimension 4 vertex by a single propagator, specifically:

V +V +(V + + V −)V +V − = V +V +V +V − with pole in (p[V +
1 ] + p[V +

2 ])2, (4.29)

V +V +(V + + V −)ψ+ψ− = V +V +ψ+ψ− with pole in (p[V +
1 ] + p[V +

2 ])2. (4.30)

At the same time, all of the 4-point graphs that a 4-field operator will contribute to

(4.4) depend on a single kinematic invariant, and it is only this kinematic invariant that

will appear in poles in the rational terms R. For example, the φ2ψ̄ψD operator could

contribute to V +V −ψ+ψ− at one loop via

ψ+ψ−(φφ+ φφ)V +V − = V +V −ψ+ψ−, (4.31)

but it could not generate a valid rational part, as it could only have the (wrong) pole in

(p[ψ+] + p[ψ−])2, rather than the (p[V +] + p[ψ+])2 in (4.26). This logic can account for all

but three of the zero rational parts (where there naively exists a diagram) in Table 2. The

remaining three zeroes, labelled with asterisks, could in principle generate rational parts

with the correct poles, namely

ψ−ψ−(ψ+ψ+ + ψ−ψ−)V +φ = V +ψ−ψ−φ (4.32)
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whose graphs are functions of (p[V +] + p[φ])2, and, in the non-Abelian case,

V +V +(φφ+ φφ)V +V − = V +V +V +V − , (4.33)

V +V +(φφ+ φφ)ψ+ψ− = V +V +ψ+ψ− (4.34)

whose graphs are both functions of (p[V +
1 ]+p[V +

2 ])2. We do not provide a single argument

to explain the starred zeroes in Table 1 in these three cases.

In short, we find — perhaps surprisingly — that the rational part of dimension 6 loops

vanishes in many cases, implying that the non-interference theorems are particularly robust

against some radiative corrections. All one-loop contributions to the |h| = 0 amplitudes in

(4.23) involving an insertion of a (4, 0) dimension 6 operator vanish exactly. More broadly,

the appearance of so many vanishing one-loop dimension 6 helicity amplitudes suggests

that the surprising one-loop structure of EFTs at dimension 6 extends beyond logarithms

to rational parts and warrants further investigation. We note that the absence of rational

parts would also have further implications for the higher-loop structure of the anomalous

dimension matrix, which have already been shown to contain many zeroes [54].

5 Phenomenological implications

Let us now briefly examine the the phenomenological implications from comparing and

convolving the tree/loop classification of operators in §3 and the pattern of tree/loop am-

plitudes in §4.

First, consider the pattern of red tree-level generated operators in Figure 1, which

mimicks the conical shape and pattern of the tree-level helicity amplitudes at dimension

4, shown schematically in Figure 4. In fact, all contact interactions of tree-level generated

dimension 6 operators interfere with the corresponding dimension 4 process at tree level; all

contact interactions of the loop-level operators do not. Note this correspondence includes

the exceptional amplitude (ψ+)4, which interferes with the tree-level operator ψ4.

The same approximately conical shape means that tree-level operators only renormalise

other tree-level operators, with one exception [55] — ψ4 renormalises Fψ2φ , which is

highlighted in blue in the Figure. The phenomenological implications of this were pointed

out in [55] for the case of corrections to the h → γγ rate in the Standard Model [22].

Corrections to h→ γγ are mediated by an operator of class φ2F 2, a loop-level suppressed

operator which does not receive, through running, a large log enhanced correction from

tree-level operators which could spoil its suppression.

From Figure 2, we see that qualified versions of the above statements also hold at

dimension 8. The set of tree-level operators retain their approximate conical shape. All

tree-level generated dimension 8 operators interfere with dimension 4 processes; many,

but not all, loop-level operators do not. Tree-level operators mostly renormalise tree-

level operators, with a few more blue exceptions: FF̄φ2D2, F̄ψ2φD2, FF̄ψψ̄D, Fψ̄2φD2,

Fψ2φD2, F 2ψ̄2φ, F 2ψ2φ.

Amongst the many dimension 8 operators, one may find phenomenologically relevant

analogues of the dimension 6 effects in h → γγ. The operators that contribute at lead-

ing order to anomalous neutral triple gauge boson couplings (ZZγ and Zγγ processes)
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are of the form F 2φ2D2 [34]. These aNTGC operators are loop-level in weakly coupled

completions, and by helicity arguments can only be renormalised by operators with the

same coordinates (4,±2). As there does not exist a diagram for the tree-level operators of

the class ψ4D2 to renormalise the F 2φ2D2 operators, the loop-level aNTGC operators are

only renormalised by loop-level operators, again avoiding the potentially large logarithmic

enhancement that would come from the running of a tree-level operator.

Consider now the pattern of tree- and loop-level dimension 6 operators’ rational one-

loop contributions to the processes (4.23) and (4.24). Dimension 6 processes do not con-

tribute to (4.23) and, in the Abelian case, to (4.24) at tree-level in the high energy limit.

In [15] it was noted that finite mass effects typically provide the leading violation of this

non-interference, exceeding possible radiative violations. However, this need not be the

case in EFTs with perturbative UV completions whose Wilson coefficients can be classified

as tree- and loop-generated. Violation of the non-interference theorem due to finite mass

effects arises from applying mass-suppressed helicity flips to tree-level diagrams involving

a dimension 6 operator. For the |h| = 0 helicity amplitudes in (4.23), the relevant di-

mension 6 operators are all loop-generated. Thus the interference terms are suppressed

by both ∼ m2/E2 (coming from mass insertions) and a loop factor (coming from the loop

suppression of the Wilson coefficient) despite involving only tree-level amplitudes in the

EFT.

If there were instead nonzero contributions to the |h| = 0 amplitudes in (4.23) from

one loop diagrams containing insertions of tree-level dimension 6 operators, these would

comprise the leading violation of the non-interference theorems, exceeding the contributions

due to finite mass effects by a relative factor of ∼ E2/m2, the loop factors being comparable.

While such diagrams are necessarily rational at one loop, one might expect them to be

nonzero in analogy with their dimension 4 counterparts. Surprisingly, as seen from Table

2, this is not the case, and the non-interference is in this sense more robust than expected

in the face of radiative corrections.

6 Discussion

We have presented a simple method for enumerating the classes of Lorentz structures of

operators that arise in a generic massless EFT of scalars, fermions and vectors. Working up

to dimension 8, we determined the tree/loop structure of both the operator coefficients (ap-

propriate for perturbative UV completions) and the helicity amplitudes they induce within

the EFT, in the process both extending various known dimension 6 results to dimension 8

and discovering new structure in rational amplitudes at dimension 6.

Functional techniques significantly simplify the tree/loop classification of operator co-

efficients in perturbative UV completions. Here we have integrated out at tree level a

generic weakly coupled renormalisable UV theory of scalars, fermions and vectors (such

as arises from a spontaneously broken gauge theory), and considered the resulting pattern

of tree- and loop-level generated operators at dimension 6 and 8 within the EFT in the

space of (n,
∑
h). The arrangement of tree-level operators mirrors that of the dimension

4 tree-level processes, and allows us to rederive known results at dimension 6, and see
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that they also hold substantively at dimension 8. To wit, it is difficult to generate oper-

ators containing field strengths at tree level; tree-level generated operators interfere with

dimension 4 tree-level processes whereas loop-level generated operators generally do not;

tree-level operators tend to renormalise tree-level operators. One may use these observa-

tions to quickly identify the relevant operators contributing significantly to a particular

process at one-loop, as we illustrated for the case of anomalous neutral triple gauge boson

scattering within the Standard Model.

The tree/loop structure of helicity amplitudes is equally rich. The dimension 4 tree-

level n ≥ 4 processes are cone shaped: other than the exceptional amplitudes arising from

the all-plus or all-minus four fermion process, they all lie within a cone |
∑
h| = n − 4,

with apex (4, 0). By simple construction rules (Figures 3 and 5) [16], one can see that the

tree-level contributions of a dimension d operator to dimension d processes therefore lie in a

cone with an apex given by the (n,
∑
h) coordinates of the operator. The cut constructible

one-loop effects of the dimension d operator — ignoring exceptional amplitudes — lie within

the same cone; the effects of the operator outside of the cone are conversely purely rational

(i.e. the process has no possible logarithmic enhancement at one-loop).

In general, a one-loop helicity amplitude may have a rational part, even if the corre-

sponding tree-level process vanishes on-shell. However, by explicit computation we have

shown this not to be the case for many important processes at dimension 6. Tree-level

generated n = 4 operators have a vanishing one-loop contribution to the processes which

vanish on-shell at tree-level. This observation may be of phenomenological use when work-

ing to one loop order within the Standard Model EFT: in a weakly coupled UV completion,

such dimension 6 processes effectively vanish completely at one loop, notwithstanding mass

effects. More broadly, the vanishing of various one loop helicity amplitudes at dimension 6

suggests that the effects of ostensibly tree-level helicity selection rules extends beyond one

loop, influencing the two-loop matrix of anomalous dimensions.

Many of these structures lack a more holistic explanation. It is possible that this could

be afforded by new techniques to generate bases of on-shell amplitudes, wherein ostensibly

different Lorentz structures can be viewed as different elements of representations of an

enlarged little group symmetry [56, 57]. Furthermore, there are many coordinates that

may be associated with a given helicity amplitude (such as the total helicity of external

vectors and fermions) which combine additively when constructing amplitudes on-shell. In

this sense, the space (n,
∑
h) is just a projection within a vector space of much larger

dimension, which may conceal additional patterns and clues.
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A Simplified models for one loop calculations

In order to illustrate the one-loop structure of dimension 6 helicity amplitudes we construct

four simplified models, two Abelian and two non-Abelian, using Dirac fermions. Dimension

6 operators are written in linear combinations that excite particles of definite helicity. Not

all dimension 6 operators are included, only those that may induce different Lorentz or

colour structures in the amplitudes we consider. An external fermion ψ± can be of type 1

or 2; φ can stand for a scalar particle or its conjugate. The simplified models are:

1) The Abelian gauge theory of a unit charge fermion ψ1 and scalar φ, along with a

neutral ψ2, with

L =− 1

4
B2 + iψ̄1 /Dψ1 + iψ̄2 /Dψ2 + |Dφ|2 − yψ̄1ψ2φ+ h.c.

+ cRφ̄φ|Dφ|2 + c+
FF φ̄φB(B − B̃) + c−FF φ̄φB(B + B̃)

+ cPP1iφ̄
↔
Dµφψ̄1γ

µψ1 + cPP2iφ̄
↔
Dµφψ̄2γ

µψ2

+ c+
Dψ̄1σ

µνPLψ2φBµν + c−Dψ̄1σ
µνPRψ2φBµν

+ c11LLψ̄1γ
µPLψ1ψ̄1γ

µPLψ1 + c12LLψ̄1γ
µPLψ1ψ̄2γ

µPLψ2 + c22LLψ̄2γ
µPLψ2ψ̄2γ

µPLψ2

+ c12LRψ̄1γ
µPLψ1ψ̄2γ

µPRψ2 + c12RLψ̄1γ
µPRψ1ψ̄2γ

µPLψ2

+ c+
11Sψ̄1PLψ1ψ̄1PLψ1 + c−11Sψ̄1PRψ1ψ̄1PRψ1 (A.1)

resulting in the following contributions to one-loop dimension 6 helicity amplitudes:
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(4, 0) (4, 2)

V
+
V

+
V
−
V
−

V
+
V
−
ψ

+
ψ
−

V
+
V
−
φ
φ

V
+
ψ
−
ψ
−
φ

V
+
V

+
V

+
V
−

V
+
V

+
ψ

+
ψ
−

(4, 0)

φ4D2 cR × × 0 × × ×

φ2ψ̄ψD
cPP1 × 0 0 0 × 0

cPP2 × 0 0 0 × 0

ψ̄2ψ2

c11LL × 0 × × × 0

c12LL × 0 × 0 × 0

c22LL × × × × × ×
c12LR × 0 × 0 × 0

c12RL × 0 × 0 × 0

(4, 2)

Fψ2φ c+
D × R R 0 × 0

F 2φ2 c+
FF R 0 R R 0 0

ψ4 c+
11S × 0 × × × 0

(4,−2)

F̄ ψ̄2φ c−D × R R R × 0

F̄ 2φ2 c−FF R 0 R 0 0 0

ψ̄4 c−11S × 0 × × × 0

The key for the above table is as in Table 2.

2) The Abelian gauge theory of a neutral real scalar, and two unit charge fermions ψ1

and ψ2, with

L =− 1

4
B2 + iψ̄1 /Dψ1 + iψ̄2 /Dψ2 +

1

2
(∂φ)2 − yψ̄1ψ2φ+ h.c.

+ c+
FF φ̄φB(B − B̃) + c−FF φ̄φB(B + B̃)

+ c+
Dψ̄1σ

µνPLψ2φBµν + c−Dψ̄1σ
µνPRψ2φBµν

+ c11LLψ̄1γ
µPLψ1ψ̄1γ

µPLψ1 + c12LLψ̄1γ
µPLψ1ψ̄2γ

µPLψ2 + c12LRψ̄1γ
µPLψ1ψ̄2γ

µPRψ2

+ c12LL×ψ̄2γ
µPLψ1ψ̄2γ

µPLψ1 + h.c. + c+
12Sψ̄2PLψ2ψ̄1PLψ1 + c−12Sψ̄2PRψ2ψ̄1PRψ1

(A.2)

resulting in
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(4, 0) (4, 2)

V
+
V

+
V
−
V
−

V
+
V
−
ψ

+
ψ
−

V
+
V
−
φ
φ

V
+
ψ
−
ψ
−
φ

V
+
V

+
V

+
V
−

V
+
V

+
ψ

+
ψ
−

(4, 0) ψ̄2ψ2

c11LL × 0 × × × 0

c12LL × 0 × 0 × 0

c12LL× × × × 0 × ×
c12LR × 0 × 0 × 0

(4, 2)

Fψ2φ c+
D × R R R × 0

F 2φ2 c+
FF × 0 0 R 0 0

ψ4 c+
12S × 0 × 0 × 0

(4,−2)

F̄ ψ̄2φ c−D × R R 0 × 0

F̄ 2φ2 c−FF × 0 0 0 0 0

ψ̄4 c−12S × 0 × R × 0

3) The SU(3) gauge theory of a colour triplet fermion ψ1 and scalar φ, along with a

colour singlet ψ2, with

L =− 1

4
G2 + iψ̄1 /Dψ1 + iψ̄2 /Dψ2 + |Dφ|2 − yψ̄1ψ2φ+ h.c.

+ cRφ̄φ|Dφ|2 + cR,�φ̄φ�(φ̄φ) + c+
FF φ̄φG(G− G̃) + c−FF φ̄φG(G+ G̃)

+ cPP1iφ̄
↔
Dµφψ̄1γ

µψ1 + cPP2iφ̄
↔
Dµφψ̄2γ

µψ2 + cPP3iφ̄
↔
DµT

aφψ̄1γ
µT aψ1

+ c+
Dψ̄1σ

µνPLT
aψ2φG

a
µν + h.c. + c−Dψ̄1σ

µνPRT
aψ2φG

a
µν + h.c.

+ c11LLψ̄1γ
µPLψ1ψ̄1γ

µPLψ1 + c12LLψ̄1γ
µPLψ1ψ̄2γ

µPLψ2 + c22LLψ̄2γ
µPLψ2ψ̄2γ

µPLψ2

+ c11LR(8)ψ̄1γ
µPLT

aψ1ψ̄1γ
µPRT

aψ1

+ c12LRψ̄1γ
µPLψ1ψ̄2γ

µPRψ2 + c12RLψ̄1γ
µPRψ1ψ̄2γ

µPLψ2

+ c+
11Sψ̄1PLψ1ψ̄1PLψ1 + c−11Sψ̄1PRψ1ψ̄1PRψ1 (A.3)

resulting in
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(4, 0) (4, 2)
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−

V
+
V
−
ψ
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ψ
−
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V
−
φ
φ

V
+
ψ
−
ψ
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φ

V
+
V

+
V

+
V
−

V
+
V

+
ψ

+
ψ
−

(4, 0)

φ4D2 cR × × 0 0 × ×
cR,� × × 0 0 × ×

φ2ψ̄ψD

cPP1 × 0 0 0 × 0

cPP2 × 0 0 0 × 0

cPP3 × 0 0 0 × R

ψ̄2ψ2

c11LL × 0 × × × 0

c12LL × 0 × 0 × 0

c22LL × × × × × ×
c12LR × 0 × 0 × 0

c12RL × 0 × 0 × 0

c11LR(8) × 0 × × × R

(4, 2)

Fψ2φ c+
D × R R 0 × 0

F 2φ2 c+
FF R 0 R R 0 0

ψ4 c+
11S × 0 × × × 0

(4,−2)

F̄ ψ̄2φ c−D × R R R × 0

F̄ 2φ2 c−FF R 0 R 0 0 0

ψ̄4 c−11S × 0 × × × 0

4) The SU(3) gauge theory of a singlet real scalar, and colour triplet fermions ψ1 and

ψ2, with

L =− 1

4
G2 + iψ̄1 /Dψ1 + iψ̄2 /Dψ2 +

1

2
(∂φ)2 − yψ̄1ψ2φ+ h.c.

+ c+
FFφφG(G− G̃) + c−FFφφG(G+ G̃)

+ c+
Dψ̄1σ

µνPLT
aψ2φG

a
µν + h.c. + c−Dψ̄1σ

µνPRT
aψ2φG

a
µν + h.c.

+ c11LLψ̄1γ
µPLψ1ψ̄1γ

µPLψ1 + c12LLψ̄1γ
µPLψ1ψ̄2γ

µPLψ2

+ c12LL(8)ψ̄1γ
µPLT

aψ1ψ̄2γ
µPLT

aψ2 + c12LL×ψ̄2γ
µPLψ1ψ̄2γ

µPLψ1 + h.c.

+ c12LRψ̄1γ
µPLψ1ψ̄2γ

µPRψ2 + c12LR(8)ψ̄1γ
µPLT

aψ1ψ̄2γ
µPRT

aψ2

+ c12RLψ̄1γ
µPRψ1ψ̄2γ

µPLψ2 + c12RL(8)ψ̄1γ
µPRT

aψ1ψ̄2γ
µPLT

aψ2

+ c+
12Sψ̄2PLψ2ψ̄1PLψ1 + c+

12S(8)ψ̄2PLT
aψ2ψ̄1PLT

aψ1

+ c−12Sψ̄2PRψ2ψ̄1PRψ1 + c−12S(8)ψ̄2PRT
aψ2ψ̄1PRT

aψ1 (A.4)
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−

V
+
V
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+
ψ
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(4, 0) ψ̄2ψ2

c11LL × 0 × × × 0

c12LL × 0 × 0 × 0

c12LR × 0 × 0 × 0

c12LR(8) × 0 × 0 × R

c12RL × 0 × 0 × 0

c12RL(8) × 0 × 0 × R

c12LL(8) × 0 × 0 × 0

c12LL× × × × 0 × ×

(4, 2)

Fψ2φ c+
D × R R R × 0

F 2φ2 c+
FF 0 0 0 R 0 0

ψ4 c+
12S × 0 × 0 × 0

c+
12S(8) × 0 × 0 × 0

(4,−2)

F̄ ψ̄2φ c−D × R R 0 × 0

F̄ 2φ2 c−FF 0 0 0 0 0 0

ψ̄4 c−12S × 0 × R × 0

c−12S(8) × 0 × R × 0
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