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ABSTRACT
We present a simulated cosmology analysis using the second and third moments of
the weak lensing mass (convergence) maps. The analysis is geared towards the third
year (Y3) data from the Dark Energy Survey (DES), but the methodology can be
applied to other weak lensing data sets. The second moment, or variances, of the con-
vergence as a function of smoothing scale contains information similar to standard
shear 2-point statistics. The third moment, or the skewness, contains additional non-
Gaussian information. We present the formalism for obtaining the convergence maps
from the measured shear and for obtaining the second and third moments of these
maps given partial sky coverage. We estimate the covariance matrix from a large suite
of numerical simulations. We test our pipeline through a simulated likelihood analyses
varying 5 cosmological parameters and 10 nuisance parameters. Our forecast shows
that the combination of second and third moments provides a 1.5 percent constraint on
S8 ≡ σ8(Ωm/0.3)0.5 for DES Y3 data. This is 20 percent better than an analysis using
a simulated DES Y3 shear 2-point statistics, owing to the non-Gaussian information
captured by the inclusion of higher-order statistics. The methodology developed here
can be applied to current and future weak lensing datasets to make use of informa-
tion from non-Gaussianity in the cosmic density field and to improve constraints on
cosmological parameters.

Key words: cosmology: observations

1 INTRODUCTION

A map of the mass distribution of the Universe, or the large-
scale structure (LSS), contains a vast amount of cosmolog-

? E-mail: mgatti@ifae.es

ical information. A given cosmological model predicts the
spatial statistics of the mass distribution as well as its evo-
lution over time. One of the cleanest ways to probe the mass
distribution in the Universe is through weak (gravitational)
lensing. Gravitational lensing refers to the phenomenon that
light rays from distant galaxies bend as they travel through
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space-time, causing distortion of the observed galaxy im-
ages. This is because the space-time is perturbed by mass
distribution between the galaxy and the observer according
to General Relativity (Einstein 1936). Weak lensing is the
regime where this perturbation is small; its effect is usually
much smaller than the noise on a single galaxy basis, and
the signal is extracted statistically using a very large ensem-
bles of galaxies. As lensing is a purely gravitational effect it
requires fewer assumptions about galaxy formation physics
compared to cosmological probes that use galaxies directly,
such as galaxy clustering (for a review of weak gravitational
lensing see e.g., Bartelmann & Schneider 2001).

A key element of a weak lensing analysis is to have a
large number of galaxies with well-measured shapes. This
means that we need 1) cosmological surveys that collect
photons from as many galaxies as possible, and 2) well-
controlled systematic errors in the shape measurement of
these galaxies. Motivated by the potential cosmological
power of weak lensing, photometric galaxy surveys targeted
at weak lensing science have been operating over the past
two decades. Today, unprecedented large galaxy surveys
such as the Dark Energy Survey (DES, Flaugher 2005), the
Hyper Suprime-Cam (HSC) Subaru Strategic Program (Ai-
hara et al. 2018), the Kilo-Degree Survey (KiDS, de Jong
et al. 2013) are all pushing the limits of weak lensing mea-
surements.

Most of the current weak lensing analyses have fo-
cussed on tomographic 2-point correlation measurements
(e.g. Troxel et al. 2017; Hildebrandt et al. 2017; Hikage et al.
2019). With the past two decades of work, the theoretical
modelling of the shear 2-point correlation function has ma-
tured significantly. Although there is still active research
on, for example, the modelling of the small scales and of
non-linear lensing corrections, the baseline theory of shear
2-point correlation function is reasonably robust. State-of-
the-art datasets from the first year (Y1) of the DES cur-
rently give the tightest constraints from galaxy surveys on
the Universe’s clustering amplitude under a ΛCDM cosmol-
ogy, S8 ≡ σ8

√
Ωm/0.3 = 0.782+0.027

−0.027 (Troxel et al. 2017). The
parameter S8, which is a combination of σ8 (the Universe’s
density variance on a scale of 8 Mpc) and Ωm (the density of
the total matter today) is designed to be approximately the
parameter most constrained by weak lensing observations.
We note that these constraints are at a level similar to those
provided by the cosmic microwave background (CMB) from
the Planck satellite, S8 = 0.841+0.027

−0.025, when marginalising
over neutrino mass (Troxel et al. 2017).

However, there is much more information stored in
the matter fields beyond what can be captured by 2-point
statistics. Two-point correlation functions only capture the
Gaussian information stored in the field, while it is well
known that the probability distribution function (PDF) of
the galaxy density contrast in the late Universe has a 1-point
distribution that is approximated better as log-normal than
Gaussian (Hubble 1934; Coles & Jones 1991; Wild et al.
2005). Over the years, efforts have been made to explore
statistics beyond 2-point for cosmology. These include 3-
point correlation functions and bi-spectrum (Takada & Jain
2003, 2004; Semboloni et al. 2011; Fu et al. 2014), shear peak
statistics (Kratochvil et al. 2010; Liu et al. 2015; Kacprzak
et al. 2016), higher moments of the weak lensing convergence
field (Van Waerbeke et al. 2013; Petri et al. 2015; Chang

et al. 2018), the PDF of the weak lensing convergence field
(Patton et al. 2016), density-split statistics (Friedrich et al.
2018; Gruen et al. 2018), Minkowski functionals (Kratochvil
et al. 2012; Petri et al. 2015) and the Minimum Spanning
Tree (MST, Naidoo et al. 2019). For some of these sum-
mary statistics (peak statistics, Minkowski functionals), one
major challenge is that no analytic theoretical prediction
of the target statistics exist and cosmological constraints
must come from a large number of numerical simulations
that span a range of cosmological parameters. In addition,
these simulations also need to be closely matched to data
and it is not clear what the requirements are for the match-
ing between simulation and data (though there exist some
work in systematically addressing this question, e.g. Brud-
erer et al. 2016; Kacprzak et al. 2019). With the increasingly
large datasets, the demand on simulations for these statis-
tics become increasingly hard to meet. For the other statis-
tics where analytical forms exist (3-point function, higher
moments, PDF, density split statistics), most of the explo-
ration work has been carried out with idealised simulations
that in many respects do not represent the survey data. One
of the reasons for this is that once one moves beyond 2-point
statistics, the measurements and modelling becomes more
complicated. This means that the noise and systematic ef-
fects propagate non-trivially.

In this paper, we focus on using the second and third
moments of the weak lensing convergence field to constrain
cosmology. In particular, this work validates the method-
ology using simulations and is targeted for the third year
(Y3) of DES data. A companion paper applying this frame-
work to the DES Y3 data will follow. First studied in Jain
& Seljak (1997), the moments of the weak lensing conver-
gence field is one of the simpler high-order statistics both
in terms of the measurement and in terms of the theoretical
modelling. Several papers (e.g., Gaztanaga & Bernardeau
1998; Fosalba et al. 2008; Van Waerbeke et al. 2013; Pujol
et al. 2016; Chang et al. 2018) have performed various mo-
ments measurements on simulations and/or data and com-
pared the results with theoretical predictions, although this
information was not then used to place constraints on cos-
mological parameters. In Vafaei et al. (2010), the authors
studied the tradeoff between different survey strategies in
CFHTLenS for combined two and three-point statistics us-
ing simulations. They concluded that combining two and
three-point statistics of the convergence field could increase
the cosmological constraints by 10-20 per cent, in the case
of CFHTLens data. In Petri et al. (2015), the authors used
a set of simulations with different cosmological parameters
to study how the moments of the convergence field can help
constrain cosmology. They included up to the fourth mo-
ments and showed that the constraints improve up to three
times compared to the power spectrum-only constraints.

We build on the previous work and make several im-
provements. First, we use an analytic framework to incor-
porate the effect of masking, adapting a well-tested pseudo
angular power spectrum estimation formalism (pseudo-C`

in the following). Second, we include several systematic ef-
fects that are commonly accounted for in shear 2-point cor-
relation function measurements and are key to obtaining
unbiased cosmological constraints: namely, shear calibration
bias, photometric redshift calibration uncertainty and intrin-
sic alignment. Third, we test how robust our statistics are to
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small-scales, higher order lensing corrections such as reduced
shear and source clustering, and to the effect of small-scales
baryonic physics. Finally, we test our framework with two
different sets of simulations (simple log-normal simulations
and full N-body simulations that match the characteristics
of the dataset of interest), each suited for specific purposes.
Although the simulations and analysis choices here are spe-
cific to the DES Y3 data, we note that the general approach
in this paper can be easily transferred to a different dataset.

The paper is organised as follows. In § 2 we describe
how we generate the weak lensing convergence maps from
a shear catalog and how the second and third moments of
this convergence map can be modelled, taking into account
the effect of the mask as well as other systematics. In § 3
we describe the characteristics and purpose of the two set
of simulations used in this work. We test the validity of
our modelling with simulations in § 4 and determine the
regime where our model can correctly predict the second and
third moments. In § 5 we derive the final components needed
for a cosmology analysis: the covariance matrix, the scale
cuts, and the likelihood. We describe also a fast emulator for
evaluating the theory prediction for the cosmology inference.
In § 6 we determine the final fiducial scale cuts by examining
how the cosmological constraints are biased as a function of
scale cuts, and we forecast the cosmological constraints for
DES Y3 and Y5 data. We summarise our findings in § 7.

2 MAP MAKING AND THEORETICAL
MODELLING

In order to extract cosmological information from weak lens-
ing convergence maps, we need to first construct the conver-
gence map κ from the more directly observed weak lensing
shear γ. The theoretical modelling of the moments measured
from the convergence map depends on the particular proce-
dure one took to construct the map. As such, we first de-
scribe in § 2.1 our map construction procedure and next
introduce in § 2.2 the theoretical model of our moment mea-
surements.

2.1 Map making

We implement a full-sky, spherical harmonics approach to
obtain an estimate of the convergence field κ from the esti-
mated shear γ (Castro et al. 2005; Leistedt et al. 2017; Wallis
et al. 2017). Such a full-sky formalism has been applied to
both DES SV and Y1 data (Wallis et al. 2017; Chang et al.
2018). In Wallis et al. (2017), the authors show that the con-
vergence maps constructed using various flat-sky projection
schemes could introduce up to 10 per cent error in the esti-
mation of the curl-free modes (E-modes) of the convergence
and up to 20 per cent for divergence-free modes (B-modes)
of the convergence for an area approximately the DES Y3
footprint (5000 deg2). As a result, it is necessary that we
use this full-sky formalism in this work.

At any position in comoving space (χ,θ,φ), one can re-
late the lensing potential ψ to the local Newtonian potential
Ψ along the line-of-sight:

ψ(χ, θ, φ) = 2
c2

∫ χ

0
dχ′

fk (χ − χ′)
fk (χ) fk (χ′)

Ψ(χ′, θ, φ), (1)

where fk assumes values of sinχ, χ, sinhχ for a closed (k = 1),
flat (k = 0) and open (k = −1) universe respectively. Eq. 1
implicitly assumes the Born approximation (i.e, the photons
move along the unperturbed geodesics when computing their
deflection angle). The lensing potential in Eq. 1 can be re-
lated to convergence κ and shear γ following Castro et al.
(2005):

κ =
1
4
(ðð̄ + ð̄ð)ψ, (2)

γ = γ1 + iγ2 =
1
2
ððψ, (3)

where ð and ð̄ are the raising and lowering operators acting
on spin-weighted spherical harmonics defined in, e.g., Castro
et al. (2005). Expanding ψ(χ, θ, φ) in spherical harmonics
leads to:

ψ(χ, θ, φ) =
∑
`m

ψ`m(χ)0Ỳ m(θ, φ) (4)

ψ`m(χ) =
∫

dΩψ`m(χ, θ, φ)0Y∗`m(θ, φ), (5)

where 0Ỳ m(θ, φ) are the spin-0 spherical harmonic basis set
and ψ`m(χ) the harmonic coefficients at a given comoving
distance. Analogously, we can expand κ and γ:

κ = κE + iκB =
∑
`m

(κE,`m + iκB,`m)0Ỳ m, (6)

γ = γ1 + iγ2 = 2
∑
`m

γ`m2Ỳ m, (7)

with 2Ỳ m spin-2 spherical harmonics. We note that the con-
vergence field has been divided into curl-free E-modes and
divergence-free B-modes. One can relate the shear signal to
the convergence field as follow:

κE,`m + iκB,`m = −
1
2
`(` + 1)Ψ`m, (8)

γ`m = γ̂E,`m + iγB,`m =
1
2
[`(` + 1)(` − 1)(` + 2)]1/2Ψ`m (9)

γ`m = −

√
(` + 2)(` − 1)
`(` + 1) (κE,`m + iκB,`m). (10)

The shear field needs first to be decomposed into spher-
ical harmonics; then E and B modes of the convergence
field follows from applying Eq. 10. Curl-free E-modes carry
most of the cosmological signal. Divergence-free B-modes
can arise due to non-linear lensing corrections (such as de-
flection along the first-order Born approximation), clustering
of the lenses and reduced shear corrections (Schneider et al.
1998, 2002; Krause & Hirata 2010). These effects are as-
sumed to be small for current stage III weak lensing surveys
(e.g., DES, KIDS, HSC) and will be neglected in the rest
of the paper (see also § 4.4). Biases in the shear measure-
ment pipeline or object selection biases can also produce

MNRAS 000, 1–27 (0000)
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B-modes that can affect the parameters inference by few
percent (Hoekstra 2004; Asgari et al. 2018). Finally, partial
sky coverage can induce mode mixing, producing spurious
B-modes in the reconstructed convergence maps due to E-
mode leakage. This will be the only source of B-modes that
we will take into account here (see § 2.2).

To apply Eq. 10 to data, we need an estimate of the
shear field. In practice, the shear field cannot be directly
measured. The observable is the reduced shear:

g =
γ

1 − κ . (11)

Since galaxies have an intrinsic shape, what we actually
measure is the ellipticity, or shape of the galaxy, which is a
noisy estimate of the reduced shear:

ε =
g + εint + εm

1 + g(εint + εm)
, (12)

where εint is the intrinsic shape of the galaxy, and εm the
shape measurement noise. The latter two quantities should
average to zero for large number of galaxies (though in §
2.2.2 we explain how to handle shear measurement biases).
Moreover, in the weak lensing regime, γ, κ � 1, so the ob-
served shape results in a noisy estimator for the shear field
ε ≈ γ + εint + εm

1. The fewer the galaxies, the noisier the
estimate of γ. This means also that our estimate of the con-
vergence field will be noisy:

κE,obs = κE,true + κE,true (13)

κB,obs = κB,true + κB,true (14)

The contribution of the noise to the convergence field
can be estimated by randomly rotating the shape of the
galaxies and applying the full-sky spherical harmonics ap-
proach to obtain the convergence (Van Waerbeke et al. 2013;
Chang et al. 2018). As the random rotation should com-
pletely erase the cosmological contribution, the resulting
convergence signal will just contain noise and should average
to 0 (but with a non-negligible variance).

It follows that when estimating second and third mo-
ments from noisy convergence maps it is necessary to prop-
erly de-noise the measured moments. Following Van Waer-
beke et al. (2013):

〈κ̂2〉i, j = 〈κ2〉i, j − 〈κκrand〉i, j − 〈κrandκ〉i, j − 〈κ2
rand〉

i, j, (15)

〈κ̂3〉i, j,k = 〈κ3〉i, j,k − 〈κ3
rand〉

i, j,k−[
〈κ2

randκ〉
i, j,k − 〈κκ2

rand〉
i, j,k + cycl.

]
. (16)

In the above equations, the term 〈κ2
rand〉

i, j is the noise-only
contribution to the second moment of the tomographic bins
i, j; for i , j it vanishes. The map κrand represents the es-
timate of the shape noise contribution to the convergence
map; it is estimated by randomly rotating the galaxy shapes.
The intrinsic ellipticity distribution of observed galaxies is

1 We note that we have ignored intrinsic alignment so far. In §
2.2.2 we explain how to include intrinsic alignment in our formal-

ism.

not expected to be perfectly Gaussian, but by the central
limit theorem, it would be the correct distribution in the
limit of large numbers of galaxies averaged in the pixels of
the convergence map (Jeffrey et al. 2018). If this holds, also
the term 〈κ3

rand〉
i, j,k (which is the noise-only contribution to

the third moment of the tomographic bin i, j, k) would van-
ish. Additional checks will need to be performed on DES Y3
data, as we do not include potential sources of noise inho-
mogeneities (e.g. astrophysical or observational systematics)
in this work. Finally, under the hypothesis of no correlation
between the convergence field and the shape noise, mixed
terms should be consistent with zero (we will check this hy-
pothesis in § 4).

The above theoretical derivation describes how to ob-
tain the convergence maps from an estimate of the shear
field. The method we implement in this paper does not as-
sume any prior knowledge of the convergence field to be re-
constructed. There exist methods, however, which implicitly
or explicitly assume priors that improve the map reconstruc-
tions over a range of metrics (e.g. Jeffrey et al. 2018; Mawd-
sley et al. 2019; Jeffrey et al. 2019). Some of these methods
will be explored in a future DES Y3 Mass Maps paper (in
prep.). We are not considering these methods here: in this
paper, the observables (convergence moments) are modelled
from theory, and including the effects of such priors on the
maps moments will be difficult. On the other hand, these
alternative methods are valuable when N-body simulations
are used to model the observables (e.g., Petri et al. 2015;
Fluri et al. 2018).

We do not describe the detailed map making procedure
here as it has been detailed in previous DES papers (e.g.,
Chang et al. 2018). To summarize, we construct the maps
using HEALPIX pixelisation (Górski et al. 2005). The first
step in the reconstruction of the mass map involves mak-
ing pixelised ellipticity (or shear estimate) maps ε1 and ε2
from a shear catalogue. These are obtained by averaging the
two components of the shape estimate over all the galax-
ies belonging to a given HEALPIX pixel. We use NSIDE =
1024, corresponding to a pixel size of 3.44 arcmin. Next, we
perform the spin transformation which converts the elliptic-
ity maps into a curl-free E-mode convergence map κ̂E and
a divergence-free B-mode convergence map κ̂B. We use the
HEALPIX functions MAP2ALM to decompose the shear field in
spherical harmonic space obtaining the coefficients γ̂E,`m,
γ̂B,`m and calculate κ̂E,`m, κ̂B,`m following Eq. 10. Finally,
we use the HEALPIX function ALM2MAP to convert these coef-
ficients back to the real space κE and κB maps.

MNRAS 000, 1–27 (0000)
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2.2 Theoretical modelling

We adopt the theoretical model for second and third mo-
ments (variance and skewness) of the convergence field using
a non-linear extension of cosmological perturbation theory
(Van Waerbeke et al. 2001; Scoccimarro & Couchman 2001;
Bernardeau et al. 2002).

As we are interested in highlighting the features of our
convergence field at different angular scales, we smooth our
recovered convergence fields using a top-hat filter at different
angular scales. We note that the choice of the type of the
filter is rather arbitrary, e.g., Van Waerbeke et al. 2013 used
a Gaussian filter. We chose a top-hat filter to facilitate the
analytical evaluation of third moments (see Appendix A). A
top-hat filter W in harmonic space of smoothing length θ0 is
defined as:

Wl(θ0) =
Pl−1(cos(θ0)) − Pl+1(cos(θ0))
(2l + 1)(1 − cos(θ0))

, (17)

where P` are Legendre polynomials of order l. The variance
of matter contrast δ smoothed by such a filter at a given
comoving distance χ is:

〈δ2
θ0,NL〉(χ) =

∑
`

2` + 1
4π

PNL(`/χ, χ)F2
` W`(θ0)2, (18)

where F` is the pixel window function2 and PNL(`/χ, χ) the
non linear power spectrum. For the latter we used HALOFIT

as detailed in Takahashi et al. (2014) and assumed in the
fiducial DES Y3 analysis.

For the smoothed version of skewness of the matter con-
trast, at leading order in perturbation theory it reads:

〈δ3
θ0,NL〉(χ) = S3[〈δ2

θ0,NL〉(χ)]
2, (19)

where S3 is the reduced skewness parameter. The analytical
derivation of the reduced skewness parameter is performed
to leading order, which is linear in the power spectrum, but
as such predictions perform well even in the mildly non-
linear regime (k ≈ 0.1h−1 Mpc Bernardeau et al. 2002), we
assume their validity when a non-linear power spectrum (the
HALOFIT from Takahashi et al. 2014) is used to compute the
variance. We also implement a refinement of the treatment of
the skewness at small scales based on N-body, cold dark mat-
ter only simulations (Scoccimarro & Couchman 2001; Gil-
Maŕın et al. 2012). In particular, we implement the analyti-
cal fitting formulae from Scoccimarro & Couchman (2001).
The modelling choices for the third moments are validated
in § 4.2. We also include in our error budget (see § 5.1) the
scatter between different small scales models to grasp the
modelling uncertainty. For the analytical expression of the
reduced skewness parameter see Appendix A.

The above equations, together with a galaxy-matter
bias model, could be used to predict the second and third
moments of the galaxy density field (for a possible appli-
cation of the moments of the galaxy density contrast dis-
tribution see, e.g., Salvador et al. 2019). Here, however, we

2 F` is modelled using the pixel window function provided by

HEALPIX.

are interested in the second and third moments of the con-
vergence field, for which a galaxy-matter bias model is not
needed. Under the Limber approximation (Takada & Jain
2002), one obtains:

〈κ2
θ0
〉i, j =

∫
dχ

qi(χ)q j (χ)
χ2 〈δ2

θ0
〉(χ), (20)

〈κ3
θ0
〉i, j,k =

∫
dχ

qi(χ)q j (χ)qk (χ)
χ4 〈δ3

θ0
〉(χ). (21)

i, j, k refers to different tomographic bins. We have dropped
the subscript NL for brevity. The term qi represents the lens-
ing kernel and reads:

qi(χ) =
3H2

0Ωm

2c2
χ

a(χ)

∫ χh

χ
dχ′ni(z(χ′))dz/dχ′ χ

′ − χ
χ

, (22)

where H0 is the Hubble constant at present time, Ωm the
matter density, c the speed of light, ni(z) the normalised
redshift distribution of a given tomographic bin, and a(χ)
the scale factor.

We note that the variance and skewness of the conver-
gence field have differing dependencies on the parameters
Ωm and σ8 (Bernardeau et al. 1997; Seljak & Zaldarriaga
1996).

2.2.1 Effects of masking

One of the problems in estimating the convergence field from
the observed shapes is that we observe only a portion of the
sky. This means that the reconstruction will suffer edge ef-
fects, due to the convolution with a window function repre-
senting the survey footprint. Some methods deal with mask
effects at the level of map making (Pires et al. 2009; Mawds-
ley et al. 2019), whereas in this work, we will account for the
mask effects in our theoretical predictions using a pseudo-C`
formalism (Brown et al. 2005; Hikage et al. 2011).

The pseudo-C` formalism correctly recovers the shear
power spectrum estimated from the shear field in the case
of partial sky coverage. It also predicts mode mixing (that
is, part of the E-modes leaks into B-modes and vice-versa).
In particular, if we define:

CEE
` =

1
2` + 1

∑
m

|γ̂E,`m |2, (23)

CEB
` =

1
2` + 1

∑
m

γ̂E,`mγ̂
∗
B,`m, (24)

CBB
` =

1
2` + 1

∑
m

|γ̂B,`m |2, (25)

one can write the masked (pseudo) spectra as the convolu-
tion of the true spectra with a mixing matrix:

Ĉ` =
∑
`′

M``′C`′, (26)

where have we introduced the vector C` ≡ (CEE
`

,CEB
`

,CBB
`
).

The mode-mode coupling matrix M is expressed in terms of
MEE,EE
``′ , MBB,BB

``′ , MEB,EB
``′ , MEE,BB

``′ . The mixing matrices
contain information about the survey geometry; analytical
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6 M. Gatti, et al.

Table 1. Cosmological, systematic and astrophysical parameters.
We report the boundaries for both Flat and Gaussian priors. For

Gaussian priors we also report the mean and the 1 σ in the prior

column.

Parameter Range Prior

Ωm 0.1. . .0.9 Flat
σ8 0.4. . .1.3 Flat
h100 55. . .90 Flat
ns 0.87. . .1.07 Flat
Ωb 0.03. . .0.07 Flat

m1 −m2 × 102 −10.0. . .10.0 0.0 ± 2.3

∆z1 × 102 −10.0. . .10.0 0.0 ± 1.6

∆z2 × 102 −10.0. . .10.0 0.0 ± 1.3

∆z3 × 102 −10.0. . .10.0 0.0 ± 1.1

∆z4 × 102 −10.0. . .10.0 0.0 ± 2.2

AIA,0 −5.0. . .5.0 Flat

αIA −5.0. . .5.0 Flat

expressions for the mixing matrices in terms of the window
function can be found in Hikage et al. (2011) and in Ap-
pendix B. The pseudo-C` formalism can be incorporated in
Eq. 20 as:

〈κ2
θ0
〉i, j,EE/BB =

∫
dχ

qi(χ)q j (χ)
χ2 ×∑

`

2` + 1
4π

f −1
` W`(θ0)2

∑
`′

MEE/BB,EE
``′ PNL(`′/χ, χ)F2

`′ f`′ .

(27)

In the above equations, the factor f` = [(`+2)(`−1)]/[`(`+1)]
accounts for the fact that the mixing matrix is applied to the
shear field rather than to the convergence field directly. De-
pending on the mixing matrix used (MEE,EE

``′ or MBB,EE
``′ ),

with Eq. 27 we can predict the variance of both E and B
modes of the recovered convergence field. As for the the
skewness, if we neglect the contribution of the masking to
the skewness parameter, we can write:

〈κ3
θ0
〉i, j,k,EE/BB =

∫
dχ

qi(χ)q j (χ)qk (χ)
χ3 S3[〈δ2

θ0,NL〉
EE/BB(χ)]2.

(28)

We will check the validity of assuming the mask effect to be
small on S3 against simulations in § 4.

2.2.2 Systematic effects

Astrophysical and measurement systematic effects are mod-
elled through nuisance parameters and are included in our
likelihood (see § 5.3). We marginalise over all the nuisance
parameters when estimating the cosmological parameters.
Values and priors are summarised in Table 1.

Photometric redshift uncertainties. Photometric red-
shift uncertainties are parametrized through a shift ∆z in
the mean of the redshift distribution:

ni(z) = n̂i(z + ∆z), (29)

where n̂i is the original estimate of the redshift distribution
coming from photometric redshift code. We assume DES Y1
priors for the shift parameters.

Multiplicative shear biases. Biases coming from the

0.0 0.5 1.0 1.5 2.0 2.5
z

0
200000
400000
600000
800000

1000000
1200000

N
(z

)

bin 1
bin 2
bin 3
bin 4
full

Figure 1. Redshift distributions of the 4 tomographic WL bins

(and the full sample), from a fiducial DES simulated sample
(DeRose et al. 2019). A bin width of ∆z = 0.01 has been used

for the histograms.

shear measurement pipeline are modelled through a mul-
tiplicative parameter 1+mi . Such parameter depends on the
tomographic bin considered and affects our moments in the
following way:

〈κ2
θ0
〉i, j → (1 + mi)(1 + m j )〈κ2

θ0
〉i, j, (30)

〈κ3
θ0
〉i, j,k → (1 + mi)(1 + m j )(1 + mk )〈κ3

θ0
〉i, j,k . (31)

Gaussian priors are assumed for each of the mi .
Intrinsic galaxy alignments. IA is modelled according

to the non-linear alignment (NLA) model (Hirata & Seljak
2004; Bridle & King 2007). It can be incorporated in the
modelling by modifying the lensing kernel:

qi(χ) → qi(χ) − A(z(χ))n
i(z(χ))
〈ni〉

dz
dχ

. (32)

The NLA model is usually used in the context of 2-point
correlation statistics, but the above equation generalises it
to the third moments case as well. The amplitude of the IA
contribution can be written as a power-law:

A(z) = AIA,0

(
1 + z
1 + z0

)αIA c1ρm,0
D(z) , (33)

with z0 = 0.62, c1ρm,0 = 0.0134 (Bridle & King 2007; Krause
et al. 2017) and D(z) the linear growth factor. We marginalise
over AIA,0 and αIA assuming flat priors.

3 SIMULATIONS

Two different sets of simulations are used to validate our
measurement. These simulations differ in the complexity of
the physics included, and are used to validate different parts
of our methodology. In particular, we make use of:

• FLASK simulations (Xavier et al. 2016). These are log-
normal realisations, and are used to produce a large number
of realisations (of the order of 1000) of the shear and con-
vergence fields. They require input power spectra for their
predictions, so they cannot be used to test the modelling of
the second and the third moments, as they are key ingre-
dients to run the simulations. We use them to model the
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covariance matrices of our measurements and to test the
modelling of mask effects.
• Takahashi et al. (2017) mocks. We use 100 full-sky

gravitational lensing convergence and shear maps obtained
from full N-body simulations and a ray-tracing algorithm de-
scribed in Takahashi et al. (2017). We use these to validate
the theoretical modelling of second and third moments over
a large number of simulations. We also use them to check
the effect of non-linear lensing corrections in our modelling.

Below we provide a more in-depth descriptions of each of
the simulations.

3.1 FLASK simulations

The FLASK software (Xavier et al. 2016) allows one to rapidly
generate full-sky, log-normal realisations of a given field (in
our case, the convergence field). In particular, FLASK assumes
the convergence field to be described by a zero-mean shifted
log-normal distribution, where the parameters of the log-
normal probability distribution function (PDF) are chosen
to match the variance and skewness of the input. The lognor-
mal approximation is usually adopted for the density field
(Hubble 1934; Coles & Jones 1991; Wild et al. 2005) and is
not expected to exactly hold for the convergence field, as it
is a weighted projection of the mass density field along the
line of sight. Tests on numerical simulations showed a lognor-
mal PDF to be a reasonable model (e.g Taruya et al. 2002;
Hilbert et al. 2011), although generalised lognormal PDFs
have been shown to improve the fit at the tails of the distri-
bution (Das & Ostriker 2006; Takahashi et al. 2011; Joachimi
et al. 2011). Observational evidences from DES SV (Clerkin
et al. 2017) finds that at intermediate scales between 10 and
20 arcmin, the convergence distributions are more lognor-
mal than Gaussian (at larger scales noise dominates). We
show in § 6.1 that relying on the lognormal approximation
to build our covariance matrix does not bias the recovery of
the cosmological parameters.

The software requires as inputs a set of auto and cross
power spectra and a log-normal shift parameter. This lat-
ter parameter is a combination of the variance and skewness
(Xavier et al. 2016) and it is computed from theory and
fixed to the value at no smoothing3. We generated theoreti-
cal predictions for the power spectra of the convergence field
for four tomographic bins of our WL source sample. We used
the true redshift distributions of the WL sample as measured
in a fiducial DES simulated sample (Buzzard, DeRose et al.
2019). Redshift distributions are shown in Fig. 1. We fixed
the cosmology of our input power spectra to be Ωm = 0.286,
σ8 = 0.82, Ωb = 0.047, ns = 0.96, h100 = 0.74. We gener-
ated 1000 realisations of the convergence fields in the form of

3 Formally, this means that the third moment computed in FLASK

should match theoretical predictions only at no smoothing. Slight

variations can occur with a non zero smoothing as the convergence
field is not perfectly log-normal. The second moment should agree

at every smoothing scale as the full power spectrum is provided.
4 The values of the cosmological parameters used to compute the
covariance are slightly different than the ones of the mocks used

to validate the modelling of second and third moments. These
values have been chosen to facilitate the comparison with other

simulated cosmological analysis for DES Y3.

HEALPIX maps (Górski et al. 2005) with NSIDE = 1024. This
resolution is chosen based on the expected number density
of the DES Y3 WL sample. For each of the realisations, we
cut out a DES Y3 footprint. We assign shape noise to each
pixel of the shear fields based on the shape noise properties
of the DES Y3 WL sample and using FLASK realisations of
the WL sample density field. The final number densities of
each bin are respectively 1.38, 1.36, 1.35, 0.86 gal/arcmin2,
while the σe (the standard deviation of the two components
for the measured galaxy shapes) are 0.29, 0.29, 0.29, 0.30.
We use such FLASK mocks to validate our modelling of the
mask effects and to generate covariance matricies for our
measurements.

3.2 Takahashi N-body simulation

The simulations are a set of 108 full-sky lensing convergence
and shear maps obtained for a range of redshifts between z =
0.05 and 5.3 at intervals of 150 h−1 Mpc comoving distance.

Initial conditions were generated using 2LPTIC (Crocce
et al. 2006) and the N-body run using L-GADGET2
(Springel 2005), consistent with WMAP 9 year results (Hin-
shaw et al. 2013): Ωm = 0.279, σ8 = 0.82, Ωb = 0.046,
ns = 0.97, h = 0.7.

The simulations begin with 14 boxes with side lengths
L = 450, 900, 1350, ..., 6300 h−1 Mpc in steps of 450 h−1

Mpc, with six independent copies at each box size and 20483

particles per box. Snapshots are taken at the redshift corre-
sponding to the lens planes at intervals of 150 h−1 Mpc co-
moving distance. The authors checked that the agreement of
the average matter power spectra with the revised HALOFIT

(Takahashi et al. 2012) was within 5 per cent for k < 1 h
Mpc−1 at z < 1, for k < 0.8 h Mpc−1 at z < 3, and for k < 0.5
h Mpc−1 at z < 7. In this paper we also check the validity
of the simulations for the angular scales of interest in §4.2.
Weak lensing quantities were estimated using the multiple
plane ray-tracing algorithm GRayTrix (Hamana et al. 2015),
and shear and convergence HEALPIX maps with resolution
NSIDE = 4096 or larger are provided. Halos are identified
in the simulation using the public code ROCKSTAR (Behroozi
et al. 2013). The simulations do not come with a galaxy cat-
alogue. For each of the 108 realisations, we produced con-
vergence maps for the 4 WL tomographic bins by properly
stacking the convergence snapshots taking into account the
redshift distributions of the bins. We used the same redshift
distribution as that used in the FLASK simulations.

4 TESTING THE MODELLING WITH
SIMULATIONS

In this section we present a series of validation tests with
simulations to show that our model presented in § 2.2 does
indeed model the second and third moments of the conver-
gence maps. We first validate our model for the effect of
masking (i.e. the mixing matrix approach) in § 4.1, then
validate the remaining components of the modelling of the
second and third moments in § 4.2. In §4.3 we estimate the
potential impact of baryonic feedback at smal scales; finally,
in §4.4, we assess the impact of higher-order lensing cor-
rections (such as reduced shear or source crowding) not in-
cluded in our modelling.
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Figure 2. Second moments (E and B modes) and third moments (E only) measured in FLASK simulations from partial-sky coverage

realisations of the DES Y3 footprint. The convergence maps are obtained from the realisations of the FLASK shear fields configured as

explained in §3.1. Mask effects are included in the theory modelling (black dots, Eqs. 27, 28). Grey bands represent the measurement
from one (taken at random) noiseless FLASK realisation, together with its uncertainty (measurements uncertainties are estimated in § 5.1).

Light blue bands also include shape noise. The average of the measurement over 1000 FLASK realisations are shown by the blue lines (error

bars are omitted). The numbers 11, 22, 33 etc. in each plot refers to the combination of tomographic bins considered to compute the
moments, while “full” refers to the non-tomographic case. Only auto-correlations are shown. Upper panels: second moments, E-mode of

the convergence maps. Middle panels: second moments, B-mode of the convergence maps. B-modes are much smaller than E-modes and

are due to mask effects. Lower panels: third moments, E-mode of the convergence maps. Third moments measured in FLASK simulations
are not expected to match the input theory perfectly (see text for more details); here, the theoretical predictions for the third moments

are replaced by the average measurement of third moments in many full-sky FLASK realisations.

4.1 Testing mask effects

We first considered the case of no shape noise. We used 1000
FLASK realizations of the DES Y3 footprint, and measured
the convergence field starting from the shear field using the
method explained in §2.1. This has been done for the four
tomographic bins and the non-tomographic sample. We then
smoothed the map with a top hat filter at different smooth-
ing scales. We choose as an interval θ ∈ [3.2, 220] arcmin, and
we used 10 equally (logarithmic) spaced scales (even though
we expect scales close to the pixels size, which is ≈ 3.4 ar-

cmin, to not contain much information). To measure the
moments of the smoothed map, we use a simple estimator:

ˆ〈κ2
θ0
〉
i, j
=

1
Ntot

Ntot∑
pix

kiθ0,pix
k j
θ0,pix

, (34)

ˆ〈κ3
θ0
〉
i, j,k
=

1
Ntot

Ntot∑
pix

kiθ0,pix
k j
θ0,pix

kkθ0,pix
, (35)

where i, j, k refers to different tomographic bins. The sum
runs over all the pixel of the sky, also outside the footprint:
the transformation from the shear field to the convergence
field is non-local and some of the power is transferred outside
the footprint, despite most of it remaining confined to the
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Figure 3. Second moments and third moments (E-modes) measured in Takahashi et al. (2017) simulations from partial-sky coverage

realisations of the DES Y3 footprint. The convergence maps have been obtained starting from a realisation of the DES Y3 shear field.
Mask effects are included in the theory modelling (black dots, Eqs. 27, 28). Grey bands represent the measurement from one (taken at

random) noiseless T17 realisation, together with its uncertainty (measurements uncertainties are estimated in § 5.1). Red bands also

include shape noise.The average of the measurement over 100 T17 realisations are shown by the red lines (error bars are omitted). The
numbers 11, 22, 33 etc. in each plot refers to the combination of tomographic bins considered to compute the moments, while “full” refers

to the non-tomographic case. Only auto-correlations are shown. Upper panels: second moments, E-modes of the convergence maps. Lower

panels: third moments, E-modes of the convergence maps.

footprint. The lack of power outside of the footprint (due
to the fact the shear field is not defined there) is taken into
account by the mixing matrices (Eqs. 27, 28).

The (smoothed) second moments, both for the E and B
modes, are shown in the top and middle panels of Fig. 2 and
compared with theoretical predictions. In the figure, we just
show auto-moments (i.e., moments obtained from maps of
the same tomographic bin). We also show the average of the
1000 FLASK realisations, which agrees to better than 0.5 per
cent with the theoretical modelling. We note that without
the mixing matrices, we would have not been able to predict
any B-modes. Moreover, our theoretical predictions for the
E-modes would have been biased high, as no leakage of E-
modes into B-modes would have occurred.

The third moments are shown in the lower panel of
Fig. 2. We just show E-modes as B-modes are not measured
at any statistical significance. As explained in § 3.1, FLASK
simulations are expected to recover the input third moments
only at no smoothing; for larger smoothing scales, we expect
(and measure) an offset with respect to theoretical predic-
tions, up to ∼ 40 per cent for θ0 ∼ 200 5. Here, however, we
are interested in how well the mixing matrices deal with the
mask effects. To check this, we just need to verify that ap-
plying our mixing matrix to a partial-sky simulation (with

5 The relevance of this offset when using FLASK to produce co-

variance matrices for our measurements is described in § 5.1.

DES Y3 mask) recovers the same answer as a the full-sky
simulation.

This is shown in the lower panel of Fig. 2 . For FLASK

third moments the theory lines are replaced by the average
of the third moments measured in many full-sky realisations.
These agree with the average of 1000 DES Y3 (partial-sky)
FLASK realisations within 3 per cent, which is much smaller
than the observational uncertainties. We conclude that our
mixing matricies deal efficiently with mask effects also for
the third moments.

We next consider a more realistic scenario in which
shape noise is included. In this case we need to perform
the de-noising procedure (eqs. 15, 16), which subtracts
the shape-noise contributions from the measured moments.
For the second moments we first checked that the mixed
terms (〈κrandκ〉i, j and 〈κrandκ〉 j,i) averaged to zero, while the
terms 〈κ2

rand〉
i,i (corresponding to the noise-only second mo-

ments) did not and needed to be subtracted. As for the
third moments, we found out that mixed terms of the form
〈κκ2

rand〉
i, j,k did not vanish for some choice of indices and

needed to be subtracted. This is due to source galaxy den-
sity – convergence field correlations that do not vanish at
the third order. All the other terms, including 〈κ3

θ0,rand〉
i,i,i ,

averaged to zero and did not need to be subtracted.

The de-noised measurements are shown again in Fig. 2
(light blue shaded regions). The measurements are clearly
noisier than the previous case, but we verified that when the
averages over the 1000 FLASK realizations are considered, the
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match with the theory shows the same level of agreement as
the noiseless case.

4.2 Testing second and third moments modelling

To validate our modelling of the second and third moments
we need a full N-body simulation. In particular, we need
to validate the E-modes, as they will be used in the cos-
mological analysis (B-modes have a low signal-to-noise, and
they will be mainly used as a diagnostic). To do this, we
use 100 realisations of the shear field obtained using Taka-
hashi et al. (2017) simulations. Such realisations do not in-
clude non-linear lensing corrections (which are probed in
§ 4.4). The comparison with the theory (second and third
moments, E-modes) is shown in Fig. 3. In the same figure,
we also show the average of the 100 realizations of the DES
Y3 footprint. For the second moments, the match with the
theory is better than 1 per cent at large scales (compatible
with the uncertainties in the modelling of mask effects) and
it is at the level of 2-3 per cent at small scales (compatible
with the accuracy of the simulations at low redshift). The
good match at large scales also justify the use of the Limber
approximation in our modelling.

For the third moment, the theory matches the measure-
ment to better than 5 per cent at all scales. The modelling at
small scales is obtained including the analytical refinement
based on N-body, cold dark matter only simulations (Scoc-
cimarro & Couchman 2001; Gil-Maŕın et al. 2012); predic-
tions from the third moments from perturbation theory only
would start departing from the T17 measurement at ∼ 30 ar-
cmin, reaching a disagreement of 80 per cent at 5 arcmin in
the first tomographic bin. This analytical refinement comes
with a modelling uncertainty (Van Waerbeke et al. 2001;
Semboloni et al. 2011; Harnois-Déraps et al. 2016; Simon
et al. 2015), which is taken into account in our covariance
matrix (see § 5.1). We test in § 6.1 that this level of accu-
racy of our modelling is good enough for our cosmological
analysis.

4.3 Baryonic effects

We discuss in this and in the next subsections the impact of a
number of effects not included in our modelling. Ultimately,
the impact of these effects (together with the comparison
with T17 sims from the previous section) will directly deter-
mine the scales to be used in the cosmological analysis.

We consider here the possible contamination of our data
vector by baryonic feedback effects at small scales. Baryonic
effects are modelled using the results from the OWLS“AGN”
simulations (Schaye et al. 2010; van Daalen et al. 2011) in
similar fashion to what has been done in the DES Y1 cosmic
shear analysis (Troxel et al. 2017). As done in DES Y1, we
rescale the power spectrum so as to include contribution
from the OWLS “AGN” sub-grid prescriptions:

PNL(k, z) →
PDM+baryons

PDM
PNL(k, z), (36)

where PDM is the OWLS power spectrum due to dark mat-
ter, and PDM+baryons is the OWLS power spectrum including
the “AGN” feedback prescription. Applying such correction

to the power spectrum should account for most of the bary-
onic effects on the third moments as well (Foreman et al.
2019 shows that baryonic contributions to the bispectrum
goes as P2

DM+baryons/P
2
DM, at least for the scales under study

here).
Deviations from our theoretical modelling due to

baryons are shown in Fig. 4. The OWLS power spectrum
dampens the measured moments at small smoothing scales,
whereas the effect is almost negligible at larger scales. From
Fig. 4 it is hard to compare the smoothing scales at which the
OWLS power spectrum starts affecting the moments with
the angular scales used in the DES Y1 cosmic shear analy-
sis (Troxel et al. 2017), as the two probes get contributions
from the high multipoles in harmonic space differently.

We note that OWLS suite is not the only set of simula-
tions including baryonic effects (see, e.g. EAGLE simulation
Hellwing et al. 2016, IllustrisTNG simulations Springel et al.
2018, Horizon simulations Chisari et al. 2018), but due to its
large impact on the DM power spectrum using it is generally
considered a conservative choice.

4.4 Higher-order lensing corrections

We next verify the impact of a number of higher-order lens-
ing corrections to our theoretical modelling (Schneider et al.
1998, 2002; Schmidt et al. 2009; Krause & Hirata 2010).
We look at three different effects: reduced shear, source-lens
clustering and magnification bias. The first is due to the fact
that we cannot directly observe the shear field, but rather
we observe the reduced shear (Eq. 11). Source-lens cluster-
ing is due to the correlation between source galaxies and
lensing potentials along the line-of-sight. The convergence
field traces the integrated density contrast up to the position
where the sources are detected. Since we estimate the con-
vergence field from an ensemble of sources at different red-
shifts, and the source galaxies are not uniformly distributed
along the line-of-sight, this affects the estimated convergence
values. The effect is enhanced in case of broad redshift dis-
tributions. We note that fluctuations in the density field are
also caused by magnification effects (magnification bias).

In order to model the reduced shear contribution, we
start from Eq. 11 and note that in the weak lensing limit
1/(1 − κ) ∼ 1 + κ. It follows that the observed shear has an
additional contribution that can be modelled as:

γobs → γ(1 + κ). (37)

Source-lens clustering and magnification effects can be mod-
elled by accounting for the effect of the density fluctuations
along the line-of-sight when estimating the shear field:

γobs → γ(1 + δobs), (38)

where the δobs ≡ 1 − Nobs/〈N〉 is the estimated density con-
trast (Nobs is the number of galaxies along the line-of-sight
and 〈N〉 is the average number of galaxies). The fluctua-
tions in the density field are due source galaxies overden-
sities and lensing magnification effects. Lensing magnifica-
tion enhances the flux of galaxies and this can locally in-
crease the number density, as more galaxies pass the se-
lection cuts/detection threshold of the sample; at the same
time, the same volume of space appears to cover a different
solid angle on the sky, causing the observed number density
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Figure 4. Impact of baryonic effects (from OWLS simulations) and two non-linear lensing corrections to measured (E-modes) moments.

The blue line (OWL) refers to the rescaled moments including baryonic contributions from AGN feedback. The orange line (label RS)
shows the contribution to reduced shear correction. The green line refers to source-lens clustering (label SL). The grey shaded regions

represent the angular scales cut out from the analysis (see § 6.1; as the scales cut is determined only for the tomographic version of the

data vector, we do not show any shaded region for the non-tomographic case).

to decrease. At first order, the impact of source galaxies over-
densities and lensing magnification effects can be modelled
as:

δobs = δgal + qκ, (39)

with q expected to be the order of unity (see Schmidt et al.
2009 for an approximate description of the term q). Sum-
ming up Eqs. 37 and 38:

γobs = γ[1 + δgal + (1 + q)κ]. (40)

Reduced shear contributes as ≈ 1 + κ, magnification ef-
fects as ≈ 1 + qκ, lens-source clustering as ≈ 1 + δgal. To test
the impact of these effects, we used Takahashi et al. (2017)
simulations. Using the full-sky spherical harmonics approach
laid out in § 2.1, we generated for every redshift layer of the
simulations: 1) shear field γ distributions starting from the
convergence maps κ; 2) shear field distributions with 1 + κ
and 1 + δgal contributions (Eqs. 37 and 38); 3) density con-
trast field distributions 1+δobs. We then stacked the redshift
layers together according to the redshift distributions of the
WL tomographic bins, and generated the following maps:

〈γ〉pix(θ) ≈
∫

dzn(z)γ(z, θ)∫
dzn(z)

, (41)

〈γ〉RSpix(θ) ≈
∫

dzn(z)(1 + κ(z, θ))γ(z, θ)∫
dzn(z)

, (42)

〈γ〉SLpix(θ) ≈
∫

dzn(z)(1 + δ(z, θ))γ(z, θ)∫
dzn(z)(1 + δ(z, θ))

. (43)

Eqs. 41, 42 and 43 are, respectively, the shear fields
with no non-linear lensing corrections, with reduced-shear
contributions and source-lens clustering. As for the latter,
we divided by the integrated density field to mimic the map

making process, where each pixel contains the average of the
shear field along the line of sight.

The impact of such corrections on E modes are shown
in Fig. 4. We estimated the moments from a full-sky, noise-
free realization of the simulation. For the reduced shear and
source-lens clustering we considered as a “theory” the mo-
ments estimated from the same realization of the simulations
using Eq. 41 to estimate the shear field. We do not show er-
ror bars for the moments measurement as we expect them
to be much smaller than DES Y3 uncertainties6 . We also do
not show magnification effects as they are of the same order
as the reduced-shear correction (assuming q of the order of
unity). We find that these non-linear lensing corrections are
much smaller then DES Y3 uncertainties and sub-dominant
with respect to baryonic effects (except for source-lens clus-
tering at very large scales of the third moments, but we do
not expect this level of contamination to bias our cosmolog-
ical inference).

5 COVARIANCE AND LIKELIHOOD

5.1 Covariance estimation

To correctly infer cosmological parameters from our data, we
need an accurate estimate of the measurement uncertainty.
We estimate the covariance from 1000 independent realisa-
tions of the FLASK simulation. For each FLASK realisation,
we measure the second and third moments of the smoothed

6 First, since we are considering the full area, we expect the co-
variance of the moments measurement to be roughly ≈ 8 times

smaller. Second, as we are using the moments of the same re-
alization with no non-linear lensing corrections as the “theory”,
we can expect the measurements to be highly correlated, and the

uncertainties in their ratio should be very small.
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Figure 5. Measured correlation matrix of second and third mo-

ments from 1000 FLASK simulations (lower right corner) and from

100 T17 simulations (upper left corner). A 12h−1 Mpc scale cut
has been applied (see § 6.1 for a definition of the scale cuts).

convergence field as explained in § 4.1. We then build our
covariance matrix as:

Ĉ =
1
ν

∑
i=1

Ns (d̂i − d̂)(d̂i − d̂)T , (44)

where ν = Ns − 1 with Ns the number of realisations, d̂i
the data vector measured in the i-th simulation and d̂ the
sample mean. The data vector is made of a combination of
second and third moments as measured at different smooth-
ing scales.

Within single realisations, variations in the measured
moments among different simulations are mostly due to two
different contributions: 1) a combination of galaxy intrin-
sic shape and measurement noise, or “shape noise”, and 2)
the cosmic density field inside the DES Y3 footprint is a
random realisation of the underlying cosmology, or “cosmic
variance”. For third moments, we also include in our covari-
ance a “modelling uncertainty” related to the analytical fit-
ting formulae describing the third moments at small scales.
The modelling uncertainty is taken to be equivalent to the
scatter between Scoccimarro & Couchman (2001) and Gil-
Maŕın et al. (2012) predictions at small scales, scatter that
can reach ∼ 20 per cent at ∼ 5 arcmin for the first tomo-
graphic bin (see Appendix A).

The measured correlation matrix is shown in Fig. 5. The
matrix has been obtained applying a scale cut of 12h−1 Mpc,
so different tomographic bins have a different number of an-
gular scales included in the data vector. Values at different
smoothing scales but for the same moment are highly corre-
lated. Fig. 5 also shows that second and third moments are
not very correlated. This is mostly due to shape noise and
third moment modelling uncertainties at small scales that
wash out existing correlations.

The values of the diagonal elements of the covariance
matrix, relative to values of their data vector entries, are
shown in Fig. 6, for both FLASK and T17 simulations. We

also show the errors due to the finite number of simula-
tion realisations. One can see that for both second and third
moments the intermediate scales are the ones with better
signal-to-noise, and that in general second moments have a
much better signal-to-noise than third moments.

The sample variance part of the covariance is
cosmology-dependent and dominates at large scales. We do
not expect this cosmological dependence to significantly im-
pact the recovery of cosmological parameters (see discussion
in § 6.1). We also note here that the lognormal approxima-
tion assumed by FLASK needs to be checked for the sam-
ple variance part of the covariance for third moments. How-
ever, the scales dominated by sample variance have a smaller
signal-to-noise smaller for the third moments; moreover, de-
spite FLASK limitations, Fig. 6 shows that the FLASK and T17
covariances agree within uncertainties. In Appendix C we
provide further evidence that the uncertainties in the mod-
elling of the third moments covariance have little effect on
the cosmological inference.

We therefore decided to rely on FLASK simulations to
build our fiducial covariance because the cosmological pa-
rameters can be easily changed and we can produce a large
number of simulations. The T17 simulations have a fixed
cosmology, and, above all, are limited in numbers, causing
the inverse of the covariance matrix to be extremely noisy.
However, in the next section we show an implementation of
a data-compression algorithm that greatly reduces the size
of the data vector (and the noise in the covariance due to
the paucity of simulations). The data compression algorithm
is implemented in our fiducial analysis and in principle al-
lows us to run our cosmological pipeline also using the T17
covariance (although it will be still noisier than the FLASK

covariance). While we still use FLASK as our fiducial covari-
ance, we show in Appendix C that the differences in the
recovered cosmological parameters between using the T17
covariance (in combination with the data compression algo-
rithm) or FLASK covariance are small.

5.2 Data-compression

To reduce the noise in our covariance matrix estimated from
FLASK mocks, we implement the MOPED data-compression
algorithm (Tegmark et al. 1997; Heavens et al. 2000; Gualdi
et al. 2018). We follow Heavens et al. (2000) and include a
data-compression scheme based on the Karhuned-Loève al-
gorithm. The algorithm works by assigning weights to each
element of the data vector that are proportional to the sen-
sitivity of the element to the variation of a given model pa-
rameter. In such a way, it is possible to reduce the dimension
of the data-vector to the number of model parameters con-
sidered. The compressed data vector can be written as:

dcompr
i

= 〈d〉T,i Ĉ−1d ≡ bid, (45)

where x is the full-length data vector, Ĉ is the measurement
covariance and dcompr

i
is the i-th element of the compressed

data vector. The index i refers to the i-th model parameter
p considered, and 〈d〉T,i is the derivative of the model data
vector with respect that parameter.

The above equation assumes that the dependence
of the covariance on cosmological parameters is mild
(∂ ln C/∂ ln pi << 1). While being reasonable, we do not ex-
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Figure 6. Diagonal elements of the covariance of the second and third moments estimated from FLASK simulations. The x-axis shows the

corresponding data vector entries. We show separate contributions due to shape noise and cosmic variance. For the third moments, we

also show the modelling uncertainties related to the small scales analytical fitting formulae. For comparison, we also show the covariance
estimated from Takahashi et al. (2017) simulations. For the total covariance, we show uncertainty due to the finite number of simulation

realisations.

plicitly prove the latter assumption as it would require pro-
ducing many covariance matricies, which is computationally
expensive. We also note that for the compression algorithm
to be lossless, the likelihood of the non-compressed data vec-
tor must be Gaussian. We check this in Appendix C, and we
show that the uncompressed data vector shows only mild
deviations from Gaussianity. We note, however, that we ex-
pect the compressed data vector to have a more Gaussian
distribution, due to the central limit theorem (Heavens et al.
2017). We show this in § 6.1.

In general, if one or more assumptions underlying the
data-compression algorithm are violated, we can expect the
compression to be not optimal. In this case the credible re-
gions would be larger than they could be (Heavens et al.
2017; Alsing et al. 2018), but the parameter inference would
still be valid.

To implement the algorithm described in Eq. 45, we use
the FLASK covariance, and we estimate the derivative of the
data vector using a 5-point stencil derivative centred on the
true value of the simulation parameters. As the model pa-
rameters we use the five cosmological parameters and all the
nuisance parameters as described in § 2.2.2. The compressed
covariance can be easily obtained as:

Ĉcompr
i j

= bTi Ĉbj . (46)

We defer the validation of the compression algorithm to Ap-
pendix C, where we compare the posterior distributions ob-
tained with and without the data-compression algorithm. In
general, we find smaller contours for the chains run with the
compressed data vector, as expected by the lower noise in
the covariance (we explain how we deal with the noise in the
covariance in the next section).

5.3 Data vector and likelihood

The final data vector includes all the “auto” moments of dif-
ferent tomographic bins (e.g., [1, 1], [1, 1, 1], [2, 2], [2, 2, 2]) and
the“cross”moments (e.g., [1, 2], [1, 1, 2], [1, 2, 2]), for a total of
10 combinations for second moments and 20 combinations
for third moments. The scale cuts are discussed in the next
section.

We evaluate the posterior of the parameters conditional
on the data by assuming a Gaussian likelihood for the data,
i.e.

−2 lnL = f2 f1[d̂ − M(p)]Ĉ−1[d̂ − M(p)]T (47)

(see § 6.1 for an investigation of this assumption). Here M(p)
is our theoretical model, d̂ is the data vector, and Ĉ−1 is
the inverse of our covariance estimate. The posterior is then
the product of the likelihood and the priors. Note that the
quantities M(p), d̂ and Ĉ−1 in Eq. 47 are to be considered
compressed quantities, and we have dropped the superscript
“compr” for brevity. The terms f1 and f2 account for noise
introduced when the covariance matrix is estimated from
random realisations of the data. Even if a covariance esti-
mate Ĉ from Nsims random realisations is an unbiased es-
timate of the true covariance of the data, its inverse Ĉ−1

is only a biased estimate of the true precision matrix C−1

(Hartlap et al. 2011). This bias can be corrected with the
multiplicative factor

f1 =
Nsims − Ndata − 2

Nsims − 1
, (48)

where in our case the number of independent realisations
used to estimate the covariance is Nsims = 1000, and Ndata

is the length of the data vector. Note that this is just an
approximate treatment of the noise in the covariance matrix,
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since the data likelihood depends on the precision matrix in
a non-linear way. Sellentin & Heavens (2016) have devised
a more accurate treatment, taking into account the impact
of the covariance estimation noise on the entire likelihood.
We investigate their alternative likelihood in Appendix C
and find that after our data compression it has a negligible
effect.

There is a second - and often more severe - problem
in estimating the likelihood of data from a finite number of
random realisations that is not solved by the likelihood of
Sellentin & Heavens (2016). This problem is that the noise in
a covariance estimate does not just change the width of pa-
rameter contours but also their location (Dodelson & Schnei-
der 2013, see also figure 1 in Friedrich & Eifler 2018 for a
simple demonstration of the effect). An approximate way to
take this into account is to multiply our log-likelihood by

f2 =
[
1 +

(Ndata − Npar)(Nsims − Ndata − 2)
(Nsims − Ndata − 1)(Nsims − Ndata − 4)

]−1
. (49)

This correction (dubbed Dodelson-Schneider-factor by
Friedrich & Eifler 2018) assumes the model to be linear
in all the parameters and widens the contours to encom-
pass the additional noise inhibited by the maximum likeli-
hood parameter estimates due to the noise in the parameters
(Dodelson & Schneider 2013). We note that as the data-
compression greatly reduces the length of the data vectors,
f1 and f2 become close to 1.

To sample the posteriors of our parameters, we use an
EMCEE sampler Foreman-Mackey et al. (2013) and we test
the convergence of our chains with the Gelman & Rubin
(1992) test.

For the cosmological parameters, we assume a flat
ΛCDM cosmology and vary five parameters: Ωm (the mat-
ter density in units of the critical density), Ωb (the baryonic
density in units of the critical density), σ8 (the amplitude
of structure in the present day Universe, parameterised as
the standard deviation of the linear overdensity fluctuations
on a 8h−1 Mpc scale), ns (the spectral index of primordial
density fluctuations) and h (the dimensionless Hubble pa-
rameter). We assume wide flat priors on Ωm and σ8 and
adopt the informative priors in h, ns and Ωb that have been
used the DES Y1 2-point function analysis (see Table 1).
When constraining cosmological parameters, we marginalise
over nuisance parameters describing photo-z uncertainties,
shear biases and IA effects in our measurements. The mod-
elling of our nuisance parameters is described in § 2.2.2. As
at the time of finishing this work, the DES Y3 priors were
not finalised yet, so we again assume DES Y1 priors for all
the nuisance parameters (priors are summarised in Table
1). Photo-z uncertainties are parametrised by a shift in the
mean of the distribution (one for each tomographic bin).
Priors for the shifts come from redshift distributions of a
matched sample of galaxies in the COSMOS survey and an-
gular cross correlation with redMaGiC galaxies (Hoyle et al.
2018). Multiplicative shear bias priors are described in Zuntz
et al. (2017). We also assume wide flat priors for intrinsic
alignment.

5.4 Fast theory predictions

The theory prediction described in § 2.2 can be quite time-
consuming due to the large number of cross-correlations and
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Figure 7. Accuracy of the emulator for the second and third
moments. We tested the emulator using a validation sample of

500 points. Each entry of the histogram refers to the maximum
relative discrepancy between the emulator predictions and the

validation model over all the smoothing scales and redshifts con-

sidered. The vertical dashed lines show the error introduced by
selecting only 15 principal components.

integrations involved. In order to speed up this calculation,
we implemented an emulator (Heitmann et al. 2006; Habib
et al. 2007). Typically, emulators in the cosmology context
are used when an expensive calculation is needed in a large
parameter space, but the variation of the calculation over
the parameter space is smooth. A primary example is pre-
dicting the dark matter power spectrum given cosmological
parameters (Heitmann et al. 2009; Kwan et al. 2015). The
power spectrum is computed to high accuracy at a given
number of points in the cosmological parameter space and
an interpolator is used to derive the power spectrum at some
arbitrary point in the parameter space.

In our case, the quantities we wish to emulate are
the second and third moments of the matter power spec-
trum once the mask edges are accounted for, namely
〈δ2
θ0,NL〉

EE/BB(χ) and 〈δ3
θ0,NL

〉EE/BB(χ). We first compute

their values at specific points in our parameter space, and
then we build an interpolator that provides fast prediction
at any point of the parameter space.

To decide which points to use for build the interpola-
tor, we sampled our parameter space using a Latin hyper-
cube (McKay 1979), which is a scheme that provides good
space-filling properties. We sampled the space delimited by
the priors defined in Table 1, and chose 500 points. For each
point of the Latin hypercube, we predicted the second and
third moments of the dark matter density field (Eqs. 18,
19) with a resolution of δz = 0.01 up to redshift 4, for 12
equally logarithmic spaced smoothing scales between θ0 = 0
arcmin and θ0 = 220 arcmin. For each smoothing scale, we
organised the predictions of our second and third moments
in a matrix of dimensionality nz × npoints = 400 × 500. Since
interpolating a 400 × 500 matrix as a function of cosmologi-
cal parameters would be impractical, we further reduce the
dimensionality using the singular value decomposition. We
define η = UBVT , where U has dimensionality nz×nz and V
nz×npoints. B is a diagonal matrix of singular values. We de-

fined the basis vectors Φ = 1√
nz

UB and weights ω =
√

nzVT .

Then, we kept only the first p < nz principal components of
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Figure 8. Accuracy of the emulator for the second and third moments as a function of four cosmological parameters. We tested the

emulator using a validation sample of 500 points. Each entry of the scatter plots refers to the mean relative discrepancy between the
emulator predictions and the validation model over all the smoothing scales and redshifts considered. Training points are shown in grey.

our basis vectors:

〈δ2
θ0,NL〉

EE/BB(χ(z),Ωm,Ωb, σ8, ns, h100) =
p∑
i=0

ωδ
2,θ0

i
(Ωm,Ωb, σ8, ns, h100)Φδ

2,θ0
i
(χ(z)), (50)

〈δ3
θ0,NL〉

EE/BB(χ(z),Ωm,Ωb, σ8, ns, h100) =
p∑
i=0

ωδ
3,θ0

i
(Ωm,Ωb, σ8, ns, h100)Φδ

3,θ0
i
(χ(z)), (51)

where the basis and weights are different for the second
and third moments and depends on the smoothing scale.
We found that setting p = 15 and p = 45 retains most of
the information in the moments (99.9 per cent and 99.7 per
cent for second and third moments respectively), so we can
neglect the other components. The third moments require
more components due to the complex dependence on cos-
mological parameters at small scales.

After the singular value decomposition, we are left
to interpolate, as a function of five cosmological parame-

ters, 60 weight functions in total between ωδ
2,θ0

i
and ωδ

3,θ0
i

measured at 500 different points in our parameter space.
We opted for a Gaussian process (Rasmussen & Williams
2006) interpolation scheme. A Gaussian process is a stochas-
tic process where any finite subset forms a multivariate
Gaussian distribution. At each reconstruction point x =
(Ωm,Ωb, σ8, ns, h100) of our parameter space, the weights

ωδ
2,θ0

i
,ωδ

3,θ0
i

are modelled as multivariate Gaussian distri-
butions with a given mean value and Gaussian errors. The
latter is determined by a covariance function k(x; x′) that
correlates the function at different points. The covariance
function depends on only two hyper-parameters (the ampli-
tude and the typical scale of the correlation) which are fixed
during the training phase.

We tested the accuracy of our interpolation scheme by
training and validating over two different sets of 500 points
determined using two different Latin hypercubes. The re-

sulting accuracy is shown in Figs 7 and 8. The performance
of the emulator is generally better than 1 per cent. The re-
covery gets worse close the the edges of the priors. This is
particularly evident for σ8 and Ωm (Fig. 8) as these two are
the parameters to which our measurement is most sensitive.
The emulator performs slightly worse for the third moment,
due to a more complex dependence on the cosmological pa-
rameters. We note that Figs. 7, 8 report the mean accuracy
of the emulator across smoothing scales and redshifts. While
for the second moments the accuracy does not strongly de-
pend on the smoothing scales or redshift, we found that the
emulator for the third moments performs slightly worse at
low redshift and intermediate scales, where the accuracy is
around ∼ 3 per cent, still well below observational uncer-
tainties. The speedup achieved by using the emulator is of
two orders of magnitudes.

After predicting the masked second and third moments
of the dark matter density field with the emulator, we took
into account the lensing kernel of the samples and the nui-
sance parameters as described in § 2.2. We checked that the
emulated theory data vector causes small variations in the
χ2 with respect to a theory data vector obtained without
approximations. For the fiducial cosmology, such variations
are of the order of ∆χ2 ∼ 0.2 − 0.4, the exact value depend-
ing on the particular scale cut combination of second and
third moments considered. We also verified that the differ-
ence between the maximum of the 1-D marginalised pos-
terior of the cosmological parameters obtained running a
MCMC chain on an emulated theory data vector and on a
non-approximated one are much smaller than the parame-
ters’ 1-σ confidence intervals. This is shown in Fig. 9, and
the differences are at the level of < 1.5 per cent for Ωm and
< 0.3 per cent for S8 = σ8(Ωm/0.3)0.5.
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Figure 9. Forecast posteriors for cosmological parameters, ob-
tained with a theory data vector and an emulated data vector (see

§ 5.4). We marginalise over nuisance parameters as explained in

§5.3. Constraints with the second and third moments combined
are shown in the S8 −Ωm plane.

6 COSMOLOGICAL CONSTRAINTS FROM
MOMENTS OF THE CONVERGENCE FIELD

6.1 Fiducial scale cuts

The last analysis choice to make before presenting the final
cosmological constraints of the second and third moments
of the convergence field is which scales are to be used for
the analysis. The scale cuts we use are determined based
on two tests. First we check that our theoretical modelling
is adequate to describe the data vectors as obtained from
the average of many N-body simulations from T17; second,
we check that the impact of baryons on our data vector
is not significant. For both tests we run MCMC chains for
different combinations of scale cuts using a data vector from
T17 simulations or a baryons-contaminated data vector and
require the resulting constraints on cosmological parameters
not to be biased against the truth.

For a combination of scales to be acceptable, we re-
quire the mean of the marginalised 1-D posterior of Ωm,
S8 = σ8(Ωm/0.3)0.5 to be within 0.3 σ of the values obtained
with a “theory” data vector. As we partially constrain ns,
we also require the posterior of ns to be within 0.5 σ of the
baseline value.

We also adopt a second criterion on the χ2 of the best-fit
cosmology. When analysing the data, the best-fit χ2 is used
for hypothesis testing and as a proxy of the adequacy of the
data vector modelling. A bad best-fit χ2 implies that either
our covariance or the parametrisation of the data vector is
not adequate to describe the measurement. Since we do not
model baryonic effects or the small discrepancies between
our theoretical predictions and the data vector from T17
simulations, we should expect the best-fit χ2 from the data
to be biased. By adopting a criteria on the χ2 of the best-fit
cosmology of the contaminated data vector we make sure
the biases from these two effects are small. In particular,
we require the χ2 of the best-fit cosmology obtained from a

contaminated data vector to be within 0.3 of the expected
spread of the χ2 distribution. Therefore, since the length
of the compressed data vector is 15, we require the best-fit
χ2 < 1.6. Ideally, for negligible contamination we expect a
best-fit χ2 = 0, as we are using a theory data vector as a
baseline (whereas using a noisy data vector would give, on
average, χ2 ∼ d.o.f. ).

In this section, scale cuts are expressed in terms of a
specific comoving scale R0; the relation with the smoothing
scale θ0 is given by θ0 = R0/χ(〈z〉), where χ(〈z〉) is the co-
moving distance of the mean redshift of a given tomographic
bin. In the case of moments from different tomographic bins,
we took the average of the 〈z〉 of the bins.

The tests run on the data vectors obtained from the
average of the T17 simulations are shown in the upper plot
of Fig. 10. As we estimated the bias in the cosmological
parameters induced by the emulator in the previous section,
we re-scaled the measured data vector by the ratio between
an emulated theory data vector and a non-approximated one
predicted at the T17 cosmology. This assumes the emulator
uncertainties propagate linearly to the data vector; this is
justified as at the T17 cosmology the emulator accuracy is
below the per cent level.

Besides emulator inaccuracies (which are handled by
the re-scaling), there are different known reasons why the
data-vector from the average of T17 might differ from our
theoretical predictions: inaccuracies of the simulations or in
the modelling of the third moments at small scales (§ 3 and
§ 4.2), inaccuracies in accounting for mask effects (§ 4.1),
inaccuracies in the covariance modelling (§ 5.1), etc. In the
past sections we showed (or discussed) these differences to
be small at the level of the data vector, but here we want to
assess the impact on the cosmological parameters posteriors.

The plots show the marginalised 1-D posterior for three
out of five cosmological parameters under study. We do not
show constraints for Ωb and h100 because the posteriors are
heavily prior dominated. For each parameter, we show the
mean of the posterior and the symmetric 1-σ confidence in-
terval. We note that ns is mildly constrained and its posterior
is partially dominated by the prior (which is assumed to be
flat with ns ∈ [0.87, 1.07]; see Table 1). The constraints from
second moments and from the combination of second and
third moments are close to the input cosmology, and pass
our 0.3σ criteria at all scales. We note that the values of Ωm
from the third moments are biased. This is due to the fact
that the posterior is strongly asymmetric. We checked that
the posterior of a theory data vector shows the same level of
shifts in the mean value of Ωm for the third moments, and
the difference with respect to the results from the T17 data
vector are much smaller than 0.3σ.

In Fig. 10 we show both the difference ∆χ2 of the T17
data vector and the theory data vector, and the χ2 of the
best-fit cosmology. The former quantity gives a rough idea of
the discrepancy of the data vector with respect to the truth:
a variation of ∆χ2 = 1 could, in the worst case possible,
cause a 1-σ shift in the marginalised 1-D posterior of one of
the parameters probed. Usually the difference is absorbed
and shared across all the parameters probed (and this is the
case). The values of best fit χ2 for the T17 data vectors also
pass our 0.3σ criteria, being always χ2 < 1.6.

We next test the impact of baryonic effects, by con-
taminating a theory data vector with the effects from the

MNRAS 000, 1–27 (0000)



Cosmology with Mass Maps moments 17

0.2 0.4
m

Scale cut
12h 1 Mpc
20h 1 Mpc
24h 1 Mpc
28h 1 Mpc
12h 1 Mpc
20h 1 Mpc
24h 1 Mpc
28h 1 Mpc
12h 1 Mpc
20h 1 Mpc
24h 1 Mpc
28h 1 Mpc

0.75 1.00
S8

0.9 1.0 1.1
ns

T17

10 1 100 101

2
10 1 100

2 best-fit

2nd moments 3rd moments 2nd+3rd moments

0.2 0.4
m

Scale cut
12h 1 Mpc
20h 1 Mpc
24h 1 Mpc
28h 1 Mpc
12h 1 Mpc
20h 1 Mpc
24h 1 Mpc
28h 1 Mpc
12h 1 Mpc
20h 1 Mpc
24h 1 Mpc
28h 1 Mpc

0.75 1.00
S8

0.9 1.0 1.1
ns

Baryons

10 1 100 101

2
10 1 100

2 best-fit

2nd moments 3rd moments 2nd+3rd moments

Figure 10. The 1-σ marginalised constraints on cosmological parameters for a number of different scale cuts. In the upper plot, the

average of 100 T17 simulations have been used as the data vector. In the lower plot, the constraints are obtained by using a theory data

vector contaminated with the OWLS AGN power spectrum. Data points represents the mean of the 1-D marginalised posterior, while
for the confidence interval we show the two-tail symmetric intervals. The column ∆χ2 represents the χ2 of the data vector contaminated

with baryonic effects or from the average of T17 sims with respect to a theory data vector. The χ2 best-fit column represents the χ2 of

the best-fitting cosmology from the MCMC chain. The vertical line in the last column marks the ∆χ2 = 1.6 boundary.
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Table 2. DES Y3/Y5 forecast: fractional accuracy (1-σ

marginalised posterior confidence intervals over input value) for

Ωm, S8 and ns . DES Y5 forecast is obtained with the expected
DES Y5 number density and DES Y3 scale cuts and tomographic

binning.

Ωm S8 ns
2 moments (Y3) 17 % 1.8 % 6.9 %
3 moments (Y3) 66 % 3.6 % 7.9 %

2 + 3 moments (Y3) 10 % 1.5 % 6.5 %
cosmic shear (Y3) 12 % 1.8 % 6.4 %

2 moments (Y5) 14 % 1.5 % 6.0 %
3 moments (Y5) 48 % 2.8% 7.9 %

2 + 3 moments (Y5) 8 % 1.4 % 5.7 %

OWLS AGN simulation, as described in § 4.3. The results
are shown in the lower panel of Fig. 10. The impact on the
data vector from baryons is more pronounced than from the
T17 data vector, as shown by the larger ∆χ2 values, and it
is more important at small scales. This translates in a bias
in ns at small scales. Second moments pass our scale cuts
criteria starting from 20h−1 Mpc, while the combination of
second and third moments from 24h−1 Mpc. As for the third
moments, they pass our criteria at all the scales probed here
(similarly to the T17 data vector test, the values of the mean
of the Ωm posteriors show a negligible shift with respect to
the values obtained using a theory data vector). At all scales
and for the the combinations of second and third moments,
our criteria on the best-fit χ2 is passed.

We note that we performed these tests adopting a
FLASK covariance, which has a slightly different cosmol-
ogy with respect to the T17 data vector. This, however, did
not significantly bias our posteriors, as shown in the upper
panel of Fig. 10.

Based on these tests, we adopt the following fiducial
scale cuts: 20h−1 Mpc as a minimum smoothing scale for
second moments, 12h−1 Mpc for third moments, and 24h−1

Mpc when second and third moments are combined. We note
that the scale 24h−1 Mpc translates into a cut at ≈ 33 (8)
arcmin for the first (fourth) tomographic bin, while 12h−1

Mpc translates into a cut at ≈ 16 (4) arcmin for the first
(fourth) tomographic bin. As there is no significant informa-
tion below twice the pixel size (i.e., < 7 arcmin) and most of
the constraining power comes from the two high redshift to-
mographic bins, we have not considered scales smaller than
12h−1 Mpc in the above tests.

With the final scale cuts determined, we perform extra
checks on the covariance and data vector. We checked that
the mean χ2 of the 1000 FLASK realisations agreed within
errors with the number of degree of freedom of our data vec-
tor. The distributions of the measured χ2 are shown in the
bottom panels of Fig. 11. We also verified that the distribu-
tion of the residuals for each entry of our data vector followed
a Gaussian distribution. This is shown in the top panels of
Fig. 11. We note that the data-compression algorithm surely
helps in giving the compressed data a more Gaussian dis-
tribution, due to the central limit theorem (Heavens et al.
2017).

6.2 Forecast

With the scale cuts finalised, we now show the forecast con-
straints for DES Y3 in Fig.12, for 5 cosmological parame-
ters. We adopted the fiducial scale cuts determined in the

Table 3. DES Y3/Y5 forecast: fractional improvements of the 1-

σ marginalised posterior confidence intervals for Ωm, S8 and ns .

DES Y5 forecast is obtained with the expected DES Y5 number
density and the same DES Y3 scale cuts and tomographic binning.

24h−1 Mpc Ωm C.I. S8 C.I. ns C.I.
scale cuts fimprovement improvement improvement

2 (Y3) → 2 + 3 (Y3) 0.57 0.79 0.97
2 (Y5) → 2 + 3 (Y5) 0.58 0.89 1.01

2 (Y3) → 2 (Y5) 0.85 0.86 0.83
3 (Y3) → 3 (Y5) 0.78 0.80 0.99

2 + 3 (Y3) → 2 + 3 (Y5) 0.87 0.97 0.89

previous section and the FLASK covariance described in § 5.1.
We compressed our data vector following § 5.2. We further
marginalise over nuisance parameters as explained in § 2.2.
In the modelling of the theory data vector we assumed per-
fect knowledge of the shape of the redshift distributions.

As we commented in the previous section, second and
third moments mostly constrain Ωm and σ8, while ns is
partially affected by the prior and h100 and Ωb are prior
dominated. In general, third moments are less constrain-
ing than second moments; however, they contain additional
non-Gaussian information and they have a slightly different
degeneration axis in the Ωm − σ8 plane compared to sec-
ond moments. This helps breaking the degeneracy when the
two are combined, delivering tighter constraints. This is also
shown in Fig.13, where we show results in the Ωm−S8 plane.

We report in Table 2 the constraining power of mo-
ments for Ωm, S8 and ns; the level of improvement when
the moments are combined is reported in Table 3. Second,
third moments and their combination constrain Ωm to 17
per cent, 66 per cent and 10 per cent respectively, and S8 to
1.8 per cent, 3.6 per cent and 1.5 per cent respectively. These
particular values are obtained specifically for DES Y3 and
depends on the particular scales and the noise properties of
sample considered.

We also forecast in Table 3 how much we expect to
improve our constraints when moving to the final DES re-
lease, which will include all the data from the five years (Y5)
of observations. The values have been obtained by assuming
the expected DES Y5 number density (which should roughly
double DES Y3 one) and the same DES Y3 scale cuts and
tomographic binning. We did not take into account the pos-
sibility of having more than four tomographic bins, which
would be possible having a deeper sample. In general, we
can expect to further improve our constraints by 10− 20 per
cent with respect to DES Y3.

We overlay in Figs. 12, 13 the expected posteriors from
the DES Y3 shear 2-point correlation function analysis.
Scale cuts for the cosmic shear analysis have been chosen
by contaminating a shear 2-point data vector with the ef-
fect of baryons and looking at the bias in the parameters’
posteriors, in a fashion similar to what has been done in
§ 6.1. The measurement covariance has been obtained us-
ing jackknife resampling and a fiducial DES Y3 simulation
(DeRose et al. 2019). The shear 2-point analysis delivers
slightly tighter posteriors than second moments alone, but
is less constraining than the combination of second and third
moments. Indeed, we find it to constrain Ωm and S8 at the
level of 12 per cent and 1.8 per cent; the combined second
and third moments result is 20 per cent more constraining.
Without measuring the cross-covariance between moments
and shear 2-point correlation function, it is hard to quan-
titatively explain why the latter is more constraining than
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Figure 12. Forecast posteriors for cosmological parameters. We marginalise over nuisance parameters as explained in §5.3. We show

constraints from second moments, third moments and second and third moments combined, along with constraints from a shear 2-point

correlation function analysis.

second moments alone. One reason could be that they have
access to the same information (the power spectrum), but
they probe scales differently (cosmic shear is more localised
in harmonic space, whereas moments get contributions from
a broader range of multipoles, being prone to baryonic ef-
fects at all smoothing scales). A different sensitivity to the
effects that drive the scale selection can limit the constrain-
ing power of a probe compared to others (see, e.g., Asgari
et al. 2019). More in general, a different sensitivity to angu-
lar scales might cause different observables to be only weakly
correlated, even if they belong to the same category of 2-
point statistics (see, e.g. Hamana et al. 2019). Future works
will investigate further the correlation between cosmic shear
and second and third moments.

One relevant feature that can be observed from Fig. 12
and Fig. 13, is that shear 2-point correlation function has a
similar degeneracy direction compared to second moments
only. Combining shear 2-point correlation function with any
other probes sensitive to the bispectrum (such as the third
moments) is likely to significantly improve the constraints
due to the different degeneracy direction of their constraints.

7 SUMMARY

In this paper, we have presented a simulated cosmology anal-
ysis using the second and third moments of the weak lensing
mass (convergence) maps, targeted at the third year (Y3)
data from the Dark Energy Survey (DES). The second mo-
ments, or variances, of the maps as a function of smoothing
scale contains similar information as the standard two-point
correlations. The third moment, or the skewness, contains
additional non-Gaussian information of the field. We de-
scribed how the convergence maps are constructed starting
from the shear catalogue using the Kaiser-Squires formal-
ism. We obtain analytical predictions for the second and
third moments using perturbation theory. We included the
effects of partial sky coverage in the theoretical modelling
of the moments using the pseudo-C` formalism. We vali-
dated the modelling of the convergence moments using a
large suite of simulations, including the effects of the survey
mask and non-linear lensing corrections (such as reduced-
shear and source crowding). We used the same simulations
to estimate the covariance. We furthermore showed how the
computation of theoretical predictions can be sped up with-
out introducing biases in the cosmological analysis by im-
plementing a 5-parameter emulator.

MNRAS 000, 1–27 (0000)



20 M. Gatti, et al.

0.15 0.30 0.45 0.60
m

0.64 0.72 0.80 0.88
S8

0.15

0.3

0.45

0.6

m

2nd moments
3rd moments
2nd + 3rd moments
Cosmic Shear Y3

Figure 13. Same as Fig. 12, but now in the S8 −Ωm plane.

We tested our pipeline through simulated likelihood
analyses varying five cosmological parameters (Ωm, σ8, ns,
Ωb, h100) and 10 nuisance parameters (modelling redshift
uncertainties, shear biases, and intrinsic alignments). We
determined the scale cuts based on the impact of baryonic
physics and modelling inaccuracies of the third moments at
small scales.

We then forecast the constraints achievable with a DES
Y3 analysis. We found that second moments, third moments,
and their combination constrain Ωm to 17 per cent, 66 per
cent and 10 per cent respectively, and S8 to 1.8 per cent,
3.6 per cent and 1.5 per cent respectively. The combina-
tion of second and third moments provides improved con-
straints with respect to second moments due to the extra
non-Gaussian information probed by the third moments and
the different inclination of the degeneracy axis in the σ8−Ωm
plane of the two probes. For DES Y5, where we expect to
have a data set with higher galaxy density, we forecast a
further improvement in the constraining power at the level
of 10 − 20 per cent.

We also compared with a forecast shear 2-point analysis
for DES Y3, which yields constraints at the level of 12 per
cent and 1.8 per cent for Ωm and S8. The combined second
and third moments result is about 20 per cent more con-
straining. This analysis shows the importance of including
in the analysis probes of higher order statistics to improve
on the cosmological constraints.

This paper has been geared towards the DES Y3 anal-
ysis; the application to DES Y3 data will follow. The appli-
cation of our methodology to DES Y3 data will necessarily
require extra checks of the data level, especially concern-
ing potential systematic effects such as modelling errors in
the point spread function, inhomogeneities in the noise, and
spurious dependencies of shear with observing conditions.

The methods developed here are general and can be ap-
plied to other datasets. We note that as the upcoming survey
data becomes deeper, the constraints from higher moments
relative to second-moments are expected to improve. This

is especially encouraging going forward on the DES Y5 and
LSST data.
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Tecnológico and the Ministério da Ciência, Tecnologia e In-
ovação, the Deutsche Forschungsgemeinschaft and the Col-
laborating Institutions in the Dark Energy Survey.

The Collaborating Institutions are Argonne National
Laboratory, the University of California at Santa Cruz,
the University of Cambridge, Centro de Investigaciones
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l’Espai (IEEC/CSIC), the Institut de F́ısica d’Altes Ener-
gies, Lawrence Berkeley National Laboratory, the Ludwig-
Maximilians Universität München and the associated Ex-
cellence Cluster Universe, the University of Michigan, the
National Optical Astronomy Observatory, the University of
Nottingham, The Ohio State University, the University of
Pennsylvania, the University of Portsmouth, SLAC National
Accelerator Laboratory, Stanford University, the University
of Sussex, Texas A&M University, and the OzDES Member-
ship Consortium.

Based in part on observations at Cerro Tololo Inter-
American Observatory, National Optical Astronomy Obser-
vatory, which is operated by the Association of Universi-
ties for Research in Astronomy (AURA) under a cooperative
agreement with the National Science Foundation.

The DES data management system is supported by
the National Science Foundation under Grant Numbers
AST-1138766 and AST-1536171. The DES participants from
Spanish institutions are partially supported by MINECO
under grants AYA2015-71825, ESP2015-66861, FPA2015-
68048, SEV-2016-0588, SEV-2016-0597, and MDM-2015-
0509, some of which include ERDF funds from the Euro-
pean Union. IFAE is partially funded by the CERCA pro-
gram of the Generalitat de Catalunya. Research leading to
these results has received funding from the European Re-
search Council under the European Union’s Seventh Frame-
work Program (FP7/2007-2013) including ERC grant agree-
ments 240672, 291329, and 306478. We acknowledge support
from the Brazilian Instituto Nacional de Ciência e Tecnolo-
gia (INCT) e-Universe (CNPq grant 465376/2014-2).

MNRAS 000, 1–27 (0000)



Cosmology with Mass Maps moments 21

This manuscript has been authored by Fermi Research
Alliance, LLC under Contract No. DE-AC02-07CH11359
with the U.S. Department of Energy, Office of Science, Office
of High Energy Physics

REFERENCES

Aihara H., et al., 2018, PASJ, 70, S4

Alsing J., Wandelt B., Feeney S., 2018, MNRAS, 477, 2874

Amendola L., 1996, Astrophysical Letters and Communications,
33, 63

Asgari M., et al., 2018, arXiv e-prints,

Asgari M., et al., 2019, arXiv e-prints,

Bartelmann M., Schneider P., 2001, Phys. Rep., 340, 291

Behroozi P. S., Wechsler R. H., Wu H.-Y., 2013, ApJ, 762, 109

Bernardeau F., van Waerbeke L., Mellier Y., 1997, A&A, 322, 1

Bernardeau F., Colombi S., Gaztañaga E., Scoccimarro R., 2002,
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APPENDIX A: SKEWNESS PARAMETER

In perturbation theory, the Fourier space equations of mo-
tion for the matter density contrast δ and the divergence of
the velocity field θ = ∇v are (Bernardeau et al. 2002):

∂δ(k, τ)
∂τ

+ θ(k, τ) =

−
∫

d3k1d3k2δD(k−k12), α(k1,k2)δ(k1, τ)θ(k2, τ) ≡ α[δ, θ,k],

(A1)

∂θ(k, τ)
∂τ

+ Hθ(k, τ) +
3ΩmH2

0
2a

δ(k, τ) =

−
∫

d3k1d3k2δD(k−k12), β(k1,k2)θ(k1, τ)θ(k2, τ) ≡ β[δ, θ,k],

(A2)

with τ being the conformal time, a the scale factor, H = d
dτ ln

a, k12 = k1 + k2 and α and β defined by:

α(k1,k2) = 1 +
1
2

k1k2
k1k2

( k1
k2
+

k2
k1
), (A3)

β(k1,k2) =
1
2

k1k2
k1k2

( k1
k2
+

k2
k1
) + (k1k2)2

k2
1 k2

2
. (A4)

The matter density contrast and the divergence of the
velocity field can be expanded as:

δ(k, τ) =
∑
n=1

δn(k, τ), (A5)

θ(k, τ) = − ∂lnD+(τ)
∂τ

∑
n=1

θn(k, τ), (A6)

where n indicates the order at which the fields are approx-
imated and D+ is the linear growth factor. At linear order,
δ1(k, τ) = θ1(k, τ) = D+(τ)δ1(k).

At second order the Fourier equations of motions are
solved by:

δ2(k, τ) = D2
+(τ)α[δ1, δ1,k] + D2(τ)(β[δ1, δ1,k] − α[δ1, δ1,k]),

(A7)

with D2 the solution of the following differential equation:

∂2D2(τ)
∂2τ

+ H
∂D2(τ)
∂τ

−
3ΩmH2

0
2a

D2(τ) = (
∂D+(τ)
∂τ

)2 (A8)

Lastly, we define the following quantity µ, as it will enter
in the modeling of the third moment:

µ ≡ 1 − D2/D2
+ (A9)

At leading order in perturbation theory, one can com-
pute the variance of the dark matter density field smoothed
by a top hat filter as:

〈δ2
θ0,lin

〉(τ) = 1
2π

∫
dkkW(k, θ0)2Plin(k, τ); (A10)

while the skewness will be described by the following equa-
tion:

〈δ3
θ0,lin

〉(τ) = 6
(2π)3

∫
d2k1d2k2W(k1, θ0)W(k2, θ0)W(k1+k2, θ0)

× Plin(k1, τ), Plin(k2, τ)F2(k1,k2, τ), (A11)

where Plin(k, τ) is the linear power spectrum and W(k, θ0) is
the top hat filter described in Eq. 17. The term F2(k1,k2, τ)
reads:

F2(k1,k2, τ) =
1
2
[(1+ k1

k2
cosφ)+(1+ k2

k1
cosφ)]+[1−µ(τ)](cos2φ−1).

(A12)

We implement here a refinement of the term F2 based
on N-body simulations (while Eq. A12 has been obtained, so
far, exclusively relying on perturbation theory). The refine-
ment we are implementing here has been first obtained by
Scoccimarro & Couchman (2001) and later on by Gil-Maŕın
et al. (2012) fitting an analytical formula to the non-linear
evolution of the bispectrum based on a suite of cold dark
matter N-body simulations. Implementing such corrections,
Eq. A12 becomes:

F2(k1,k2, τ) =
1
2

b1b2[(1 +
k1
k2

cosφ) + (1 + k2
k1

cosφ)]

+[1− µ(τ)]c1c2(cos2φ−1)+[a1a2µ(τ)−b1b2+[1− µ(τ)]c1c2].
(A13)

The terms a, b, c are taken from Gil-Maŕın et al. (2012);
their subscripts in the above equations indicate if they refer
to k1 or k2. In particular:

a(n, k, τ) = 1 + (σ8D+)a6 [0.7(4 − 2n)/(1 + 22n+1)]1/2(qa1)n+a2

1 + (qa1)n+a2
,
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(A14)

b(n, k, τ) = 1 + 0.2a3(n + 3)(qa7)n+3+a8

1 + (qa7)n+3.5+a8
, (A15)

c(n, k, τ) = 1 + 4.5a4/[1.5 + (n + 3)4(qa5)n+3+a9

1 + (qa5)n+3.5+a9
. (A16)

In the above equations q ≡ k/kNL, where kNL is the scale
where non-linearities start to be important and it is defined
so that k3

NLP(k, τ)/2π2 = 1. We report in table A1 the values
of the coefficients a1, ..., a9 as from Scoccimarro & Couchman
(2001) and Gil-Maŕın et al. (2012). Implementing these cor-
rections in Eq. A11 leads to:

〈δ3
θ0,lin

〉(τ) = 6
(4π2)

∫
dk1dk2W(k1, θ0)W(k2, θ0)

× Plin(k1, τ), Plin(k2, τ)
∫

dφW(
√

k2
1 + k2

2 + 2k1k2cosφ, θ0)

× F2(k1, k2, φ, τ). (A17)

The integral on the angle φ can be written as:∫
dφW(

√
k2

1 + k2
2 + 2k1K2cosφ, θ0)F2(k1, k2, φ, τ)

=
1
2

b1b2

∫
dφW(

√
k2

1 + k2
2 + 2k1k2cosφ, θ0)[2+(

k1
k2
+

k2
k1
)cosφ]

+

∫
dφW(

√
k2

1 + k2
2 + 2k1k2cosφ, θ0)[(1 − µ)c1c2(cos2φ − 1)]

+

∫
dφW(

√
k2

1 + k2
2 + 2k1k2cosφ, θ0)[a1a2µ−b1b2+(1−µ)c1c2].

(A18)

For brevity, we omitted the dependence on τ from µ. The
three integrals in Eq. A18 can be solved as:

b1b2[2πW(k1, θ0)W(k2, θ0) +
π

2
∂

∂θ0
(W(k1, θ0)W(k2, θ0))]

− c1c2[π(1 − µ)W(k1, θ0)W(k2, θ0)]
+ 2π[a1a2µ − b1b2 + (1 − µ)c1c2]W(k1, θ0)W(k2, θ0) =
π

2
b1b2

∂

∂θ0
[W(k1, θ0)W(k2, θ0)]

+ π[2a1a2 − (1 − µ)c1c2]W(k1, θ0)W(k2, θ0). (A19)

After some algebra, one can express Eq. A17 as:

〈δ3
θ0,lin

〉(τ) = 6
[∫

dkkW(k, θ0)2Plin(k, τ)
]2

− 3
[∫

dkk(1 − µ)cW(k, θ0)2Plin(k, τ)
]2

+
3
4

∂

∂lnθ,0

[∫
dkkbW(k, θ0)2Plin(k, τ)

]2
, (A20)

〈δ3
θ0,lin

〉(τ) = 3[2(〈δ2
θ0,lin,a

〉(τ))2 − (1 − µ)(〈δ2
θ0,lin,c

〉(τ))2+

3
2

∂〈δ2
θ0,lin,b

〉(τ)
∂lnθ0

. (A21)

In the above equation we have defined

〈δ2
θ0,lin,X

〉(τ) = 1
2π

∫
dkk X(k, τ)W(k, θ0)2Plin(k, τ), (A22)

Table A1. Values of the coefficients for the fitting formula de-
scribed in Eqs. A14, A15 and A16 from Scoccimarro & Couchman

(2001) (SC01) and Gil-Maŕın et al. (2012) (GM12).

coefficient SC01 GM12

α1 0.25 0.484
α2 3.5 3.740
α3 2 -0.849
α4 1 0.392
α5 2 1.013
α6 -0.2 -0.575
α7 1 0.128
α8 0 -0.722
α9 0 -0.926

with X that can be either a, b or c. We finally define the
reduced skewness parameter as

S3 ≡
〈δ3
θ0,lin

〉(τ)

〈δ2
θ0,lin

〉(τ)2
. (A23)

The original perturbation theory result can be obtained not-
ing that in the limit of a, b, c→ 1 we have δ2

θ0,lin,a
, δ2

θ0,lin,b
,

δ2
θ0,lin,c

→ δ2
θ0,lin

; in this case, the reduced skewness param-

eter assumes the following form:

S3 ≡
〈δ3
θ0,lin

〉(τ)

〈δ2
θ0,lin

〉(τ)2
= 3(1 + µ) + 3

2

∂ln〈δ2
θ0,lin

〉(τ)
∂lnθ0

. (A24)

The equations above for the third moments hold in the
linear regime, but they are usually extrapolated to the mild
non-linear regime using predictions of the non-linear power
spectrum.

We note that there is up to a 20% difference between
Scoccimarro & Couchman (2001) and Gil-Maŕın et al. (2012)
fitting formulae at small scales (∼ 5 arcmin for the first tomo-
graphic bin). In our main analysis we use the values for the
coefficients from Scoccimarro & Couchman (2001) because
they provide a better fit to our simulations, but we include
the difference between the Scoccimarro & Couchman (2001)
and Gil-Maŕın et al. (2012) models in our covariance in or-
der to grasp the small scales modeling uncertainty of the
skeweness.

APPENDIX B: MODE-MODE COUPLING
MATRICES

We provide here mathematical recipes for the mode-mode
coupling matrices M used in § 2.2 to account for masking
effects. Such matrices are developed in the contest of pseudo
power spectrum estimators (e.g, Wandelt et al. 2001; Brown
et al. 2005; Hikage et al. 2011; Hikage & Oguri 2016). In
particular, we strictly follow here §2.1 of Hikage et al. (2011).

In the presence of a window function (in our case, the
DES Y3 footprint) K(θ, φ), the shear field assumes the fol-
lowing expression:

γ̄1(θ, φ) + γ̄2(θ, φ) = K(θ, φ)(γ1(θ, φ) + γ2(θ, φ)). (B1)

When the shear field is transformed into its spherical
harmonic counterpart (Eq. 7), it obtains an additional con-
tribution due to the convolution with the footprint mask:

ˆ̄γE,lm ± i ˆ̄γB,lm =
∫

dΩ[K(θ, φ)(γ1(θ, φ) + γ2(θ, φ))]±2Y∗lm(θ, φ).

MNRAS 000, 1–27 (0000)
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(B2)

The quantities ˆ̄γE,lm and ˆ̄γB,lm are called pseudo E and
B modes (as they are convolved with the footprint mask) and
their relation with the true E and B modes can be written
as:

ˆ̄γE,lm ± i ˆ̄γB,lm =
∑
l′m′
(γ̂E,lm ± iγ̂B,lm)±2Wll′mm′, (B3)

where ±2Wll′mm′ is a convolution kernel

±2Wll′mm′ =

∫
dΩ±2Yl′m′(θ, φ)C(θ, φ)±2Y∗lm(θ, φ) =∑

l′′m′′
Kl′′m′′(−1)m

√
(2l + 1)(2l ′ + 1)(2l” + 1)

4π
×(

l l ′ l ′′

±2 ∓2 0

) (
l l ′ l ′′

m m′ m′′

)
, (B4)

with

(
l l ′ l ′′

m m′ m′′

)
Wigner 3 j symbols and Klm =∫

dΩK(θ, φ)Y∗
lm
(θ, φ) the harmonic transform of the window

function. Defining

CEE
l =

1
2l + 1

∑
m

|γ̂E,lm |2, (B5)

CEB
l =

1
2l + 1

∑
m

γ̂E,lmγ̂
∗
B,lm, (B6)

CBB
l =

1
2l + 1

∑
m

|γ̂B,lm |2, (B7)

we can write the masked (pseudo) spectra as the convolution
of the true spectra with a mode-mode coupling matrix:

C` =
∑
`′

M``′C`′, (B8)

where we introduced the vector C`(CEE
`

,CEB
`

,CBB
`
). The

mode-mode coupling matrix M is expressed in terms of
MEE,EE
``′ , MBB,BB

``′ , MEB,EB
``′ , MEE,BB

``′ :

MEE,EE
ll′ = MBB,BB

ll′

=
2l ′ + 1

8π

∑
l′′
(2l ′′ + 1)Kl′′[1 + (−1)l+l′+l′′]×(

l l ′ l ′′

2 −2 0

)2
, (B9)

MEE,BB
ll′ = MBB,EE

ll′

=
2l ′ + 1

8π

∑
l′′
(2l ′′ + 1)Kl′′[1 − (−1)l+l′+l′′]×(

l l ′ l ′′

2 −2 0

)2
, (B10)

MEB,EB
ll′ =

2l ′ + 1
4π

∑
l′′
(2l ′′ + 1)Kl′′

(
l l ′ l ′′

2 −2 0

)2
, (B11)

with Kl =
1

2l+1
∑

m KlmK∗
lm

.
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Figure C1. Measured compressed correlation matrix of second
and third moments from 1000 FLASK simulations. A 12h−1 Mpc

scale cut has been applied (see § 6.1 for a definition of the scale

cuts). The entries of the correlation matrix are shown with respect
to the parameter used to compress the data vector.

APPENDIX C: CONSTRAINTS WITH
DATA-COMPRESSION AND ALTERNATIVE
COVARIANCE MATRIX

Our fiducial analysis has been carried out using a covari-
ance matrix obtained from multiple FLASK realisations (see
§ 3.1). FLASK is a log-normal simulation, where the only re-
quired inputs are the desired auto and cross power spectra of
the convergence fields and the so-called log-normal shift pa-
rameters (which effectively set the skewness of the simulated
fields at one scale, see e.g. Friedrich et al. 2018; Gruen et al.
2018). No additional physics is encoded in the FLASK maps.
This means that our FLASK realisations reproduce the cor-
rect 2nd moments set by our ΛCDM input spectra, but has
only limited accuracy in its 3rd moments. We have shown
that this does not strongly bias the recovery of input cosmo-
logical parameters once applied to N-body simulations (see
§ 6.1).

In this section, we show how to obtain cosmological con-
straints from our pipeline using the T17 covariance and com-
pare them to the ones obtained from the FLASK covariance,
using a data compression algorithm (described in § 5.2). We
also validate the efficiency of the data compression algorithm
and show how it helps to reduce the noise in the inferred
parameters caused by the paucity of simulations used to es-
timate the covariance matrix.

We show the compressed correlation matrix in Fig. C1.
The correlation matrix has now 15 entries, as many as as
the number of parameters we constrain in our analysis. In-
terestingly, the correlation between the different elements of
the compressed data vector reflects the correlation between
parameters (e.g., Ωm and σ8 show a significant correlation,
as expected from Fig. 12).

We next perform here several tests to validate our com-
pression algorithm. First, we run two forecast chains us-
ing the compressed and uncompressed FLASK covariance and
compare the contours. This is shown in the top left panel
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Figure C2. Posterior of Ωm and S8 for four different cases. Top left : posteriors obtained using the uncompressed and compressed FLASK

covariance, without applying any corrections due to the noise (Eqs. 48 and 49). Top right : posteriors obtained using uncompressed FLASK
covariance, with a number of corrections to account for the noise in the estimated covariance matrix. “Hartlap” refers to the Hartlap

et al. (2011) correction (Eq. 48), “DS” refers to the Dodelson & Schneider (2013) correction (Eq. 49), while “SH” refers to the Sellentin

& Heavens (2016) likelihood (see text in Appendix C for more details). Bottom left : same as the top right panel, but for compressed
data vectors. Bottom right : posteriors obtained using the compressed FLASK and T17 covariances. In all the cases above, to highlight the

effects of the noise in the estimate of the covariance matrix, only 400 N-body simulations have been used (instead of 1000).

of Fig. C2, for the Ωm and S8 parameters. In this first test,
we did not apply any correction for the noise in the inverse
of the covariance (Eqs. 48 and 49), as we are interested in
validating the compression algorithm only. The marginalised
1-D posteriors of Ωm and S8 have similar width, showing that
the data compression implemented is basically lossless. As a
caveat, we remind the reader that we assume the likelihood
to be Gaussian, which in the case of the uncompressed data
vector is only an approximation (see below).

Second, we show in the top right panel of Fig. C2 how
the constraints degrade once the uncertainties in the inverse
of the covariance matrix are taken into account. The Hart-
lap et al. (2011) and Dodelson & Schneider (2013) correc-
tions (Eqs. 48 and 49) noticeably enlarge the contours, the
net effect depending on the number of simulations used to

estimate the covariance matrix. We also show, for compar-
ison purposes, how the posteriors would look if the likeli-
hood from Sellentin & Heavens (2016) was used. Sellentin
& Heavens (2016) argue that when the covariance matrix is
estimated from simulations, the likelihood is no longer Gaus-
sian but rather is described by an adapted version of a mul-
tivariate t-distribution, a fact not taken into account by the
Hartlap et al. (2011) correction. They suggest that marginal-
ising over the true covariance improves over the simple Hart-
lap et al. (2011) correction, and this is confirmed by the top
right panel of Fig. C2. We note, however, that the additional
scatter in the parameters posterior encoded by the Dodel-
son & Schneider (2013) correction is not accounted for in
the Sellentin & Heavens (2016) framework.

The lower left panel of Fig. C2 is the same as the top
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Figure C3. This figure is the same as Fig. 11 but for a uncompressed data vector. Upper panels: residuals of individual data points in

units of their expected standard deviation. We compare to a Gaussian with 0 mean and unit standard deviation; we also compare to a

Gaussian corrected by the first term of the Edgeworth expansion of the likelihood (see text for more details). Bottom panels: Distribution
of the χ2 of each realization of the FLASK simulations, compared to a theoretical χ2 distribution.

right panel but for the compressed data vector. The com-
pression greatly reduces the noise in the estimated covari-
ance matrix and Eqs. 48 and 49 approaches ∼ 1. Also the
Sellentin & Heavens (2016) likelihood approaches a multi-
variate Gaussian, becoming almost indistinguishable from
the no correction case.

Lastly, in the lower right panel of Fig. C2 we show the
contours obtained using the compressed T17 covariance ma-
trix. We expect the shape of the posterior to be different
when using the compressed T17 covariance and the FLASK

covariance in two ways. First, the cosmology of the T17 sim-
ulations is slightly different from FLASK one. Second, third
moments should be more accurately modelled in the T17
simulations as FLASK does not contain the physics to model
the third moments beyond the log-normal shift. Differences
in the widths between the two compressed covariances are
smaller than 2 per cent, suggesting that the two factors con-
sidered above have a modest impact.

Finally, we comment on the more Gaussian nature of
the compressed data vector compared to the uncompressed
one. This is shown in Fig. C3. The residuals of the uncom-
pressed data vector appear much less Gaussian for the third
moments and the combination of second and third moments
compared to what we found for the compressed data vec-
tor in Fig. 11 (no significant difference in the distribution
of the residuals is seen for when only second moments are
used). We compute how the distribution of residuals would
look if the likelihood were not purely Gaussian, by means of
a multivariate Edgeworth expansion of the likelihood (e.g.,
Amendola 1996):

L = G(x,C)[1 + 1
6

ki jkx hi jk + ...], (C1)

with

hi jk = (−1)3G−1(x,C)∂i jkG(x,C), (C2)

where G(x,C) is the Gaussian part of the likelihood, x and

C are the data vector and its covariance respectively, and

ki jkx = 〈xi x j xk〉 is the third order cumulant of the data vec-
tor (which can be measured in simulations). The predicted
distribution of residuals in Fig. C3 obtained with the first
term of the Edgeworth expansion is in better agreement with
the one measured in FLASK simulations.
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