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We develop an algorithm based on an interaction network to identify high-transverse-momentum
Higgs bosons decaying to bottom quark-antiquark pairs and distinguish them from ordinary jets
that reflect the configurations of quarks and gluons at short distances. The algorithm’s inputs are
features of the reconstructed charged particles in a jet and the secondary vertices associated with
them. Describing the jet shower as a combination of particle-to-particle and particle-to-vertex
interactions, the model is trained to learn a jet representation on which the classification problem is
optimized. The algorithm is trained on simulated samples of realistic LHC collisions, released by the
CMS Collaboration on the CERN Open Data Portal. The interaction network achieves a drastic
improvement in the identification performance with respect to state-of-the-art algorithms.
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I. INTRODUCTION

Jets are collimated showers of hadrons that reflect the
configurations of quarks and gluons produced at particle
colliders. Each shower, consisting of quarks and gluons
emitted by the primary particle, results in an approx-
imately cone-shaped spray of hadrons, which are then
observed in particle detectors. Jet identification, or tag-
ging, algorithms are designed to identify the nature of the
primary particle that initiates a shower by studying the
collective features of the hadrons inside the jet.
Traditionally, jet tagging was limited to light-flavor

quarks (q), gluons (g), or b quarks. At the CERN Large
Hadron Collider (LHC), jet tagging becomes a more com-
plex task as new jet topologies are accessible (see Fig. 1).
Due to the large center-of-mass energy available in LHC
collisions, heavy particles, such asW , Z, and Higgs bosons
(H) and top quarks (t), may be produced with large
transverse momentum (pT). These particles can decay to
all-quark final states. Due to the large pT of the original
particle, these quarks are produced within a small solid
angle. The overlapping showers produced by these quarks
may be reconstructed as a single massive jet. As shown
in Fig. 1, the presence of b quarks in the jet gives rise to
unique experimental signatures. In particular, b hadrons
are characterized by a lifetime of approximately 1.5 ps,
which results in a detectable displacement between the
proton-collision point and the point where the b hadron
decays.

∗ jduarte@ucsd.edu

The identification of jets from heavy resonances relies
on jet substructure techniques, designed to quantify the
number of clusters of energetic particles, or prongs, inside
the jet. The study of jet substructure was pioneered in
the 1990s and early 2000s [1–4], but interest skyrocketed
after its proposed application to reconstruct Higgs bosons
when produced in association with a vector boson [5].
Extensive reviews of these techniques are provided in
Refs. [6, 7]. Additional discrimination is provided by
the reconstructed jet mass, usually computed after a jet
grooming algorithm. A review of the techniques used to
reconstruct jets and their substructure at the LHC ex-
periments can be found in Ref. [8]. The jet mass plays a
special role in physics analyses exploiting jet substructure,
as described for instance in Ref. [9]. The jet mass distribu-
tion is typically used to separate jets from boosted heavy
particles, characterized by a peaking distribution, from
the smoothly falling background, due to ordinary quark
and gluon jets. For certain applications, it is desirable
to avoid any distortion of the jet mass distribution when
applying a jet-tagging selection.

Due to its lifetime, the presence of a b hadron inside of
a jet typically results in a reconstructed secondary vertex
(SV) that is displaced from the primary vertex (PV).
Modern particle detectors are equipped with a vertex
detector that can accurately determine SV positions and
their separation from the PV, even in a dense environment
like a high-pT jet. This feature is particularly important
for tagging a Higgs boson decaying to a bottom quark-
antiquark pair (H → bb) because all of the relevant jet
constituents originate from two displaced vertices.
Recently, several approaches based on deep learning

ar
X

iv
:1

90
9.

12
28

5v
4 

 [h
ep

-e
x]

  2
8 

Ju
l 2

02
0

This manuscript has been authored by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the U.S. Department of 
Energy, Office of Science, Office of High Energy Physics.

https://orcid.org/0000-0001-5666-3637
https://orcid.org/0000-0003-3954-5131
https://orcid.org/0000-0002-9705-101X
https://orcid.org/0000-0002-2191-0666
https://orcid.org/0000-0003-0964-1480
https://orcid.org/0000-0001-8172-7081
https://orcid.org/0000-0002-5076-7096
https://orcid.org/0000-0003-1939-4268
https://doi.org/10.1103/PhysRevD.102.012010
mailto:jduarte@ucsd.edu


2

q/g

 t→Wb→qqb h→bb

 W/Z→qqb

FIG. 1. Pictorial representation of ordinary quark and gluon
jets (top left), b jets (top center), and boosted-jet topologies,
emerging from high-pT W and Z bosons (top right), Higgs
bosons (bottom left), and top quarks (bottom right) decaying
to all-quark final states.

(DL) have been proposed to optimize jet tagging algo-
rithms (see Sec II), both using expert features with dense
layers or raw data representations (e.g., images or lists of
particle properties) with more complex architectures. For
instance, the LHC collaborations and other researchers
have investigated the optimal way to combine substruc-
ture, tracking, and vertexing information to enhance the
tagging efficiency for high-pT H → bb decays [10–15].
This is an important task in particle physics because mea-
surements of high-pT H → bb decays may help resolve
the loop-induced and tree-level contributions to the gluon
fusion process, providing an complementary approach
to study the t Yukawa beyond the ttH process [16–19].
These measurements are also sensitive probes for physics
beyond the standard model [17, 18, 20–26]. Finally, im-
proving these measurements is important for measuring
the Higgs boson self-coupling through the production of
HH → bbbb [27–30].
While existing DL approaches have been successfully

applied to jet tagging, particle jets involve multiple enti-
ties with complex interactions that are not easily encoded
as images or lists. Graphs provide a natural representa-
tion for such relational information. Traditional machine
learning methods use feature engineering and prepro-
cessing to learn from these graphs, which can be time
consuming and costly, and may miss important features
present in the data. Graph representation learning, in-
cluding graph convolution networks [31–34] and graph
generative models [35, 36], leverages DL to learn directly
from graph-structured data. In contrast to other DL
methods, graph representation learning can (1) handle
irregular grids with non-Euclidean geometry [37], (2) en-
code physics knowledge via graph construction [38], and
(3) introduce relational inductive bias into data-driven
learning systems [39]. For example, while convolutional
neural networks (CNNs) are powerful classifiers that work
extremely well for data represented on a grid [40, 41],
geometric DL algorithms, such as graph neural networks
(GNNs) [42, 43], are applicable even without an underly-

ing grid structure. Because the data in many scientific
domains are not Euclidean, GNNs emerge as a more nat-
ural choice.
In this work, we propose to identify H → bb jets with

an interaction network (IN), a type of graph network. In
Ref. [44], INs were introduced to describe complex phys-
ical systems and predict their evolution after a certain
amount of time. This was achieved by constructing graph
networks to learn the interactions between the physical
objects, represented as the nodes of the graph. Just
as noted jet substructure variables like Nβ=1

2 and Dβ=1
2

compute 2-point energy correlation functions between
jet constituents to quantify the number of prongs in a
jet [45, 46], we posit that the ability of INs to learn com-
plex pairwise relationships aids in identifying the patterns
present in H → bb decays. Moreover, Ref. [47] showed
that the learned features of an IN correlate with known
jet substructure variables. It was further demonstrated
that the IN architecture outperformed other deep neural
networks (DNNs), such as dense, convolutional, and re-
current networks, for a jet-substructure classification task.
However, this study was limited because the simulation
considered was not fully realistic.

In this paper, we demonstrate that an interaction net-
work with an extended feature representation outperforms
state of the art methods forH → bb tagging with Geant4-
based [48] realistic simulation, while relying on less pa-
rameters. In particular, we investigate the use of INs to
learn a collective representation of the tracking, vertexing,
and substructure properties of the jet and employ this
optimized representation to enhance the tagging efficiency.
By placing charged particles and secondary vertices on
a graph, the network can learn a representation of each
particle-to-particle and particle-to-vertex interaction, and
exploit this information to categorize a given jet as signal
(H → bb) or background (QCD).

The study is carried out using a sample of fully simu-
lated LHC collision events, released by the CMS Collabo-
ration on the CERN Open Data portal [49]. Previously,
many machine learning studies were limited to studies
based on generator-level physics with simple detector
emulation. The released CMS full-simulation samples
allow for a more in depth and realistic study of the effi-
cacy of machine learning methods on high-energy physics
experiments. We compare the performance to several
different algorithms that we trained with open simula-
tion for H → bb tagging based on the architecture of
the deep double-b (DDB) tagger created by the CMS
Collaboration [11].
The IN and DDB taggers only rely on information re-

lated to charged particles, which (unlike neutral particles)
can be traced back to their point of origin: the PV of the
high-pT collision, any SV generated in the collision, or ad-
ditional PVs originating from simultaneous proton-proton
interactions (pileup). This choice makes the algorithm
particularly robust against the large pileup contamination
expected in future LHC runs since this contamination
can be removed via so-called charged hadron subtraction
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(CHS) [50]. For the IN tagger, we consider an extended
representation of each charged particle (secondary ver-
tex), with 22 (12) additional features with respect to the
nominal DDB tagger (as discussed in Sec. III). To enable
a fair comparison between network architectures, we also
report results for an extended variant of the DDB tagger,
the deep double-b + (DDB+) tagger, which consumes the
same information as the IN tagger.

This paper is structured as follows: we discuss related
work in Sec. II. Section III gives a brief description of the
datasets used. Sections IV and V describe the IN archi-
tecture and the algorithms used to decorrelate its score
from the jet mass distribution. Section VI describes our
reconstruction and training of the DDB and DDB+ algo-
rithms. Results are presented in Sec. VII and conclusions
are given in Sec. VIII.

II. RELATED WORK

The use of DNNs has recently found a great deal of
success in particle physics [6, 51], especially jet tagging.
Driving this innovation are increasingly complex architec-
tures that are tailored to particular domains, including
CNNs [52–54], which are well suited to computer vision,
and recurrent neural networks (RNNs) [55, 56] like long
short-term memory units (LSTMs) [57] and gated recur-
rent units (GRUs) [58], which are appropriate for natural
language processing. Several classification algorithms
have been studied in the context of jet tagging at the
LHC using CNNs [59–63] and physics-inspired DNN mod-
els [63–66]. Recurrent and recursive layers have been
used to define jet classifiers starting from a list of re-
constructed particle momenta [67–70]. Recently, several
different approaches, applied to the specific case of t jet
identification have been compared [71] on a public t jet
tagging dataset [72]. This study found ParticleNet [73],
a GNN based on the dynamic graph CNN [34] to be
the best performing for that task. In Ref. [47], it was
shown that the area under the receiver operating charac-
teristic (ROC) curve (AUC), accuracy, and background
rejection at a 30% true positive rate (TPR) of a simple
IN architecture trained with the same dataset is within
1%, 0.5%, and 40% of those of ParticleNet, while using
70% fewer parameters. Unsupervised, semisupervised,
and weakly supervised methods have also been proposed,
mainly to tag t jets or jets coming from postulated new
particles [74–84]. Finally, others have also explored the
CMS open data and simulation to study jet properties and
jet classification algorithms in a realistic setting [85–90].
For the task of identifying H → bb specifically, sev-

eral machine learning approaches have been applied. In
generator-level studies, Ref. [15] uses images, representing
both the H candidate jet and the full event, as inputs to
a CNN. In conditions more closely resembling real data,
the CMS Collaboration created a boosted decision tree
based on expert chosen features to identify the presence
of two b hadrons within a single anti-kT [91, 92] R = 0.8

jet (AK8 jet) [10]. This approach was extended using
a deep neural network and additional particle-level and
vertex level information, the DDB tagger [11]. Other
more generic CMS algorithms, also based on deep neural
networks and known as the boosted event shape tagger
(BEST) and the DeepAK8 tagger, were created to classify
the decays of multiple heavy resonances, including H,
Z, W , and t [13]. The ATLAS collaboration has also
designed an algorithm to identify two b hadrons within
an anti-kT R = 1 jet using b tagging of track-based sub-
jets [14]. For the task of H → bb identification, the CMS
DDB tagger, DeepAK8 algorithm, and the ATLAS tagger
achieve similar state-of-the-art performance.

Graph networks [47, 71, 73, 93] and the related particle
flow networks [94] have recently been used for other kinds
of jet tagging, matching or exceeding the performances
of other DL approaches, for event classification [95, 96],
for charged particle tracking in a silicon detector [97, 98],
for mitigation of the effects pileup [99], and for particle
reconstruction in irregular calorimeters [98, 100–102] and
the IceCube experiment [96].
While applying GNNs is natural for particle physics

data, one issue we confront in this paper is how to deal
with heterogeneous hierarchical data, i.e. data composed
of different sets of elements with different numbers and
types of features. The primary original contributions of
this paper are (1) designing an IN with data comprising
a heterogeneous graph with two types of graph nodes:
particles and SVs), (2) demonstrating that an IN achieves
competetive performance on public, realistic simulation
for the task of H → bb tagging with fewer trainable
parameters in a way that is robust to the effects of pileup,
and (3) comparing and evaluating mass decorrelation
methods.

III. DATA SAMPLES

The CMS open data and simulation are available from
the CERN Open Data Portal [49], including releases of
2010, 2011, and 2012 CMS collision data as well as 2011,
2012, and 2016 CMS simulated data.

Samples of H → bb jets are available from simulated
events containing Randall-Sundrum gravitons [103] de-
caying to two Higgs bosons, which subsequently decay
to bb pairs. The event generation was done by the CMS
Collaboration with MADGRAPH5_aMCATNLO 2.2.2
at leading order, with graviton masses ranging between
0.6 and 4.5TeV. Generation of this process enables
better sampling of events with large Higgs boson pT.
The main source of background originates from multi-
jet events. The background dataset was generated with
pythia 8.205 [104] in different bins of the average pT of
the final-state partons (p̂T). The parton showering and
hadronization was performed with pythia 8.205 [104],
using the CMS underlying event tune CUETP8M1 [105]
and the NNPDF 2.3 [106] parton distribution functions.
Pileup interactions are modeled by overlaying each simu-



4

lated event with additional minimum bias collisions, also
generated with pythia 8.205. The CMS detector response
is modeled by Geant4 [48].

The outcome of the default CMS reconstruction work-
flow is provided in the open simulation [107]. In par-
ticular, particle candidates are reconstructed using the
particle-flow (PF) algorithm [108]. Charged particles from
pileup interactions are removed using the CHS algorithm.
Jets are clustered from the remaining reconstructed par-
ticles using the anti-kT algorithm [91, 92] with a jet-size
parameter R = 0.8. The standard CMS jet energy cor-
rections are applied to the jets. In order to remove soft,
wide-angle radiation from the jet, the soft-drop (SD) al-
gorithm [5, 109] is applied, with angular exponent β = 0,
soft cutoff threshold zcut < 0.1, and characteristic radius
R0 = 0.8 [110]. The SD mass (mSD) is then computed
from the four-momenta of the remaining constituents.
A signal H → bb jet is defined as a jet geometrically

matched to the generator-level Higgs boson and both b
quark daughters. Jets from QCD multijet events are used
to define a sample of fake H → bb candidates.
The dataset is reduced by requiring the AK8 jets to

have 300 < pT < 2400GeV, |η| < 2.4, and 40 < mSD <
200GeV. After this reduction, the dataset consists of 3.9
million H → bb jets and 1.9 million inclusive QCD jets.
Charged particles are required to have pT > 0.95GeV
and reconstructed secondary vertices (SVs) are associated
with the AK8 jet using ∆R =

√
∆φ2 + ∆η2 < 0.8. The

dataset is divided into blocks of features, referring to
different objects. Different blocks are used as input by
the models described in the rest of the paper.

The IN uses 30 features related to charged particles (see
Table III in Appendix 3). The IN also uses 14 SV features
listed in Table IV. The DDB tagger [11] uses a subset
of the above features (8 features for each particle and 2
features for each SV), chosen to minimize the correlation
with the jet mass. In addition, the DDB tagger uses
27 high-level features (HLF) listed in Table V and first
used in a previous version of the algorithm, described in
Ref. [10]. To isolate the effects of the different architecture,
the DDB+ tagger uses the same inputs as the IN tagger,
while retaining the architecture of the DDB tagger. The
charged particles (SVs) are sorted in descending order of
the 2D impact parameter significance (2D flight distance
significance) and only the first 60 (5) are considered.

IV. THE INTERACTION NETWORK MODEL

The IN is based on two input collections comprising Np
particles, each represented by a feature vector of length P ,
and Nv vertices, each represented by a feature vector of
length S. Although kinematic features of neutral particles
could also be taken into account with an additional input
graph, we verified that doing so does not significantly
improve the performance for this task as shown in Sec. VII.
Further, excluding neutral particles has the benefit of
improved robustness to pileup. For a single jet, the input

consists of an X and a Y matrix, with sizes P ×Np and
S ×Nv, respectively. The X matrix contains the input
features (columns) of the charged particles (rows), while
the Y matrix contains the input features of the SVs.

A particle graph Gp is constructed by connecting each
particle to every other particle through Npp = Np(Np−1)
directed edges. Similarly, a particle-vertex graph Gpv is
constructed by connecting each vertex to each particle
through Npv = NpNv directed edges. As described be-
low, we only consider those edges that are received by
particles because the final aggregation is performed over
the particles. These graphs are pictorially represented in
Fig. 2 for the case of three particles and two vertices. As
shown in the figure, the graph nodes and edges are arbi-
trarily enumerated. The result of the graph processing is
independent of the labeling order, as described below.

p3

p1 p2
(pp)1

(pp)2 (pp)4

(pp)3

(pp)5 (pp)6

p3

p1 p2

v1 v2

(vp)1 (vp)4

(vp)2 (vp)3

(vp)5 (vp)6

FIG. 2. Two example graphs with 3 particles and 2 vertices
and the corresponding edges.
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For the graph Gp, a receiving matrix (RR) and a sending
matrix (RS) are defined, both of size Np × Npp. The
element (RR)ij is set to 1 when the ith particle receives the
jth edge and is 0 otherwise. Similarly, the element (RS)ij
is set to 1 when the ith particle sends the jth edge and

is 0 otherwise. For the second graph, the corresponding
adjacency matrices RK (of size Np × Nvp) and RV (of
size Nv ×Nvp) are defined. In the example of Fig. 2, the
RR, RS , RK , and RV matrices would be written as:

RR =


(pp)1 (pp)2 (pp)3 (pp)4 (pp)5 (pp)6

p1 1 1 0 0 0 0

p2 0 0 1 1 0 0

p3 0 0 0 0 1 1

, (1)

RS =


(pp)1 (pp)2 (pp)3 (pp)4 (pp)5 (pp)6

p1 0 0 1 0 1 0

p2 1 0 0 0 0 1

p3 0 1 0 1 0 0

, (2)

RK =


(vp)1 (vp)2 (vp)3 (vp)4 (vp)5 (vp)6

p1 1 1 0 0 0 0

p2 0 0 1 1 0 0

p3 0 0 0 0 1 1

, (3)

RV =

( (vp)1 (vp)2 (vp)3 (vp)4 (vp)5 (vp)6

v1 1 0 1 0 1 0

v2 0 1 0 1 0 1

)
. (4)

Each column of an adjacency matrix corresponds to a
directional connection from one particle to another, (pp)i,
or from a vertex and to a particle, (vp)j . Column en-
tries that are 1 in a given row in the receiving matrix
RR indicate that the corresponding particle receives that
connection. Likewise, if a column entry is 1 in a given
row in the sending matrix RS , the corresponding particle
is the sender for that connection. Because the fully con-
nected particle graph we consider has no self-connections,
i.e. no particle sends and receives the same connection,
the rows of RR and RS do not share any of the same
nonzero column entries. For the RR and RV adjacency
matrices, we only consider those connections that are sent
to particles because the final aggregation is performed
over the particles. We tested a version of the IN architec-
ture in which we considered connections that are sent to
vertices as well and aggregated separately before being
processed by the final network, but found no significant
improvement.

The data flow of the IN model is pictorially represented
in Fig. 3. The input processing starts by creating the
2P × Npp particle-particle interaction matrix Bpp and
the (P + S)×Nvp particle-vertex interaction matrix Bvp

defined as:

Bpp =

(
X ·RR
X ·RS

)
, (5)

Bvp =

(
X ·RK
Y ·RV

)
, (6)

where · indicates the ordinary matrix product. Each
column of Bpp consists of the 2P features of the sending
and receiving nodes of each particle-particle interaction,
while each column of Bvp consists of the P + S features
of each particle-vertex one.

Processing each column of Bpp by the function fppR , one
builds an internal representation of the particle-particle
interaction with a function fppR : R2P 7→ RDE , where DE

is the size of the internal representation. This results
in an effect matrix Epp with dimensions DE ×Npp. We
similarly build the Evp matrix, with dimensions DE×Nvp,
using a function fvpR : RP+S 7→ RDE .
We then propagate the particle-particle interactions

back to the particles receiving them, by building Epp =

EppR
>
R with dimension DE ×Np. We also build Evp =

EvpR
>
V with dimension DE ×Np, which collects the infor-

mation of the particle-vertex interactions for each particle
and across all of the vertices.
The next step consists of building the C matrix, with

dimensions (P + 2DE) × Np, by combining the input
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(∙ RR [Np × Npp] )
∙ RS [Np × Npp]

Bpp [2P × Npp]

…

…

𝒇Rpp

…

𝒇Rpp

𝒇Rpp

𝒇Rpp{

{P features
Np particles

…

…
… … … …

… Epp [DE × Npp]

)(

(
∙ RK [Np × Nvp,]

∙ RV [Nv × Nvp]

Bvp [(P+S) × Nvp]

…

…{

S 
fe

at
ur

es …

… … …

… {Nv vertices

) )…

𝒇Rvp
𝒇Rvp

𝒇Rvp

𝒇Rvp

Evp [DE × Nvp]

( ( )
Evp [DE × Np]

… … … …

…

…
—

( )… … … …

…

…

Epp [DE × Np]
—

∙ RR [Npp × Np]
T

∙ RK [Nvp × Np]
T

… … … …

…

…

)(
C [(P+2DE) × Np]

…

…

… … … …

…

…

…

… … … …

𝒇O 𝒇O
𝒇O

…( )
O [DO × Np]

O [DO]
—

Sum 
rows

( )ŷH(bb) 𝟇C

ŷQCD

X [P × Np]

Y [S × Nv]

FIG. 3. Illustration of the IN classifier. The particle feature matrix X is multiplied by the receiving and sending matrices RR
and RS to build the particle-particle interaction feature matrix Bpp. Similarly, the particle feature matrix X and the vertex
feature matrix Y are multiplied by the adjacency matrices RK and RV , respectively, to build the particle-vertex interaction
feature matrix Bvp. These pairs are then processed by the interaction functions fppR and fvpR , and the post-interaction function
fO, which are expressed as neural networks and learned in the training process. This procedure creates a learned representation
of each particle’s post-interaction features, given by Np vectors of size DO. The Np vectors are summed, giving DO features for
the entire jet, which is given as input to a classifier φC , also represented by a neural network. More details on the various steps
are given in the text.

information for each particle (X) with the learned repre-
sentation of the particle-particle (Epp) and particle-vertex
(Evp) interactions:

C =

 X
Epp
Evp

 . (7)

The final aggregator combines the input and interaction
information to build the postinteraction representation of
the graph, summarized by the matrix O, with dimensions
DO × Np. The aggregator consists of a function fO :
RP+2DE 7→ RDO , which computes the elements of the
O matrix The elements of the O matrix are computed
by a function fO : RP+2DE 7→ RDO , which returns the
postinteraction representation for each of the input nodes.
As is done for fppR and fvpR , fO is applied to each column
of C.
We stress the fact that the by-column processing ap-

plied by the fppR , fvpR , and fO functions and the sum
across interactions by defining the Epp and Evp matrices
are essential ingredients to make the outcome of the IN
tagger independent of the order used to label the Np

input particles and Nv input vertices. In other words,
while the representations of the RR, RS , RK , and RV
matrices depend on the adopted labeling convention, the
final representation of each particle does not.
The learned representation of the post-interaction

graph, given by the elements of the O matrix, can be
used to solve the specific task at hand. Depending on the
task, the final function that computes the classifier output
may be chosen to preserve the permutation invariance of
the input particles and vertices. In this case, we first sum
along each row (corresponding to a sum over particles) of
O to produce a feature vector O with length DO for the jet
as a whole. This is passed to a function φC : RDO 7→ RN ,
which produces the output of the classifier.

The training of the IN is performed with the CMS
open simulation with 2016 conditions. The input dataset
is split into training, validation, and test samples with
percentages of 80%, 10%, and 10%, respectively.
We use PyTorch [111, 112] to implement and train

the classifier on one NVIDIA GeForce GTX 1080 GPU.
We also convert the interaction network into a Tensor-
Flow model, as discussed in Appendix 3. The model
is implemented with each of fppR and fvpR expressed as
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a sequence of 3 dense layers of sizes (60, 30, 20) with a
rectified linear unit (ReLU) activation function after each
layer. The function fO is a similar sequence of dense
layers of sizes (60, 30, 24) with ReLU activations. We use
up to Np = 60 charged particles and Nv = 5 secondary
vertices as inputs to the IN tagger. Given the size of these
layers, the total number of trainable parameters is 18,144.
We train the model using the Adam optimizer [113] with
an initial learning rate of 10−4 and a batch size of 128 for
up to 200 epochs, enforcing early stopping [114] on the
validation loss with a patience of 5 epochs. The size of the
batch is constrained by the required memory utilization
of the GPU. The training takes approximately 25 minutes
per epoch on the GPU and stopped after 110 epochs.
For the baseline algorithm, we minimize the categori-

cal cross-entropy loss function for this classification task
LC and let the network exploit all of the discriminating
information in the dataset.
To determine the impact of neutral particles, we also

train an augmented all-particle IN model, which consumes
an additional input set with 10 kinematic features for up
to 100 charged or neutral particles, listed in Table VI.
This additional input set is processed by the model in a
similar way to the SV input set: the set of all particles
is fully connected to the set of charged particles. The
effect matrix for these interactions is computed by an
independent neural network and then appended to an en-
larged C matrix, now of size (P+3DE)×Np, before being
processed by the network fO. The remaining steps of the
model proceed as described above. The total number of
trainable parameters for this model is 24,254.

V. DECORRELATION WITH THE JET MASS

Many possible applications of a jet tagging algorithm
would require the final score to be uncorrelated from
the jet mass, so that a selection based on the tagger
score does not change the jet mass distribution. This
is particularly relevant for the background distribution,
but is required to some extent also for the signal one.
Several techniques exist to deliver a tagger with minimal
effects on the jet mass distribution. For taggers based
on high-level features, one could remove those features
more correlated to the jet mass or divide those correlated
features by the jet mass. For taggers based on a more
raw representation of the jet (as in this case), one could
perform an adversarial training [115–119]. One could
also reweight or remove background events such that the
background mSD distribution is indistinguishable from
the signal mSD distribution [120]. Finally, one could also
define a mass-dependent threshold based on simulation as
in the “designing decorrelated taggers” (DDT) procedure
proposed in Ref. [121]. We test and compare all three
methods in App. VIII. We found the DDT method to be
the most robust and performant deocorrelation procedure.
As such, we use it as the nominal decorrelation method
in the following results.

A. Designing decorrelated taggers

Following the DDT procedure [121], the tagger thresh-
old for a given false positive rate (FPR) or “working
point” is determined as a function of mSD. By creating a
mSD-dependent tagger threshold, the background jet mSD

distribution for events passing and failing this threshold
can be made identical. In practice, this is done by consid-
ering the distribution of the network score versus the jet
mSD for the training dataset. A quantile regression was
used to find the threshold on the network score as a func-
tion of mSD distribution that would correspond to a fixed
quantile (the chosen 1−FPR value). By construction, this
procedure results in near-perfect mass decorrelation.
In this case, a gradient boosted regressor [122, 123]

with the following parameters was used:

• α-quantile of 1− FPR,

• number of estimators of 500,

• minimum number of samples at a leaf node of 50,

• minimum number of samples to split an internal
node of 2500,

• maximum depth of 5,

• validation set of 20%,

• early stopping with tolerance of 10.

VI. DEEP DOUBLE-B TAGGER MODELS

The DDB tagger is a convolutional and recurrent neu-
ral network model developed by CMS [11] to identify
boosted H → bb jets. We reconstruct this model based
on publicly available information from the CMS Collab-
oration as follows. The model takes as input 27 HLFs
used in Ref. [10], as well as 8 particle-specific features
of up to 60 charged particles, and 2 properties of up to
5 SVs associated with the jet (see Appendix 3). Each
block of inputs is treated as a one-dimensional list, with
batch normalization [124] applied directly to the input
layers. For each collection of charged particles and SVs,
separate 1D convolutional layers [125], with a kernel size
of 1, are applied: 2 hidden layers with 32 filters each and
ReLU [126] activation. The outputs are then separately
fed into two gated recurrent units (GRUs) with 50 out-
put nodes each and ReLU activations. Finally, the GRU
outputs are concatenated with the HLFs and processed
by a dense layer with 100 nodes and ReLU activation,
and another final dense layer with 2 output nodes with
softmax activation. Dropout [127] (with a rate of 10%)
is used in each layer to prevent overfitting. The nominal
DDB tagger model has 40,344 trainable parameters, 32%
of which are found in the fully connected layers.
We define a variant of this model, the DDB+ model,

which takes as input all 30 features of charged particles
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and all 14 features of the SVs. In this variant, we do
not consider the HLFs. Thus, the final dense layer only
receives the GRU outputs from processing the low-level
charged particle and SV information. This extended
DDB+ tagger algorithm has 38,746 trainable parameters.
The number of parameters is less overall because the
increase in the size of the convolutional and recurrent
layers is compensated by the decrease in the size of the
fully connected layers.

We train the DDB and DDB+ models using the CMS
open simulation dataset with Keras [128] over up to
200 epochs with an early stopping patience of 5 epochs
and a batch size of 4096 using the Adam optimizer with
an initial learning rate of 10−3. For both models, one
training epoch takes about 3 minutes and training stops
after approximately 50 epochs. In this case, the larger
batch size is possible due to the smaller GPU memory
utilization of the model during training. We find consis-
tent performance for different batch size choices with no
evidence of overfitting with larger batch sizes.

In order to decorrelate the tagger output from the
jet mass, we use the same DDT procedure described in
Sec. VA applied to both the DDB and DDB+ taggers.
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FIG. 4. Performance of the IN, all-particle IN, DDB, and
DDB+ algorithms quantified with a ROC curve of FPR (QCD
mistagging rate) versus TPR (H → bb tagging efficiency). The
performance of each baseline algorithm is compared to that
of the algorithms after applying the DDT procedure to decor-
relate the tagger score from the jet mass. This decorrelation
results in a smaller TPR for a given FPR.

VII. RESULTS

In Fig. 4 the performance of the IN, all-particle IN,
DDB, and DDB+ algorithms are quantified in a ROC
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FIG. 5. An illustration of the “sculpting” of the background
jet mass distribution (top) and the signal jet mass distribu-
tion (bottom) after applying a threshold on the tagger score
corresponding to a 1% FPR for several different algorithms.
The unmodified interaction network is highly correlated with
the jet mass, but after applying the methods described in the
text, the correlation is reduced for the background while the
peak of the signal distribution is still retained.
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TABLE I. Performance metrics of the different baseline and decorrelated models, including accuracy, area under the ROC
curve, background rejection at a true positive rate of 30% an 50%, and true positive rate and mass decorrelation metric 1/DJS

at a false positive rate of 1%. For the DDT models, the corresponding accuracy is listed for the tagger after the decorrelation is
performed for a FPR of 50%.

Model Parameters Accuracy AUC 1/εb 1/εb εs 1/DJS

@ εs = 30% @ εs = 50% @ εb = 1% @ εb = 1%

Baseline models
Interaction network 18,144 95.5% 99.0% 4616.9 1028.8 82.8% 4.5
Deep double-b 40,344 91.7% 97.2% 578.0 165.3 60.6% 75.3
Deep double-b+ 38,746 95.3% 98.8% 3863.1 852.7 81.5% 4.4

Decorrelated models
Interaction network, DDT 18,144 93.2% 98.5% 2258.7 540.0 75.6% 29,265.3
Deep double-b, DDT 40,344 86.8% 96.7% 456.6 136.8 55.9% 48,099.0
Deep double-b+, DDT 38,746 92.9% 98.3% 1973.8 466.6 72.9% 15,171.2

curve. The axes are the TPR, orH → bb tagging efficiency
and the false positive rate, or QCD mistagging rate. As
shown in Fig. 4, the IN provides an improved performance
with respect to the DDB and DDB+ taggers. At a 1%
FPR, the IN tagger outperforms the DDB and DDB+
taggers by 37% and 2% in TPR, respectively. Likewise,
at a 50% TPR, the IN tagger yields a factor of 6 or 1.2
better background rejection (1/FPR) than the DDB or
DDB+ tagger, respectively. Thus, while the additional
inputs provide a significant improvement for the DDB+
model, the IN architecture is also important to achieve
a better performance with significantly less parameters
than the DDB+ model.

We verified that one could match the performance ob-
tained by the IN with a DDB-inspired architecture and
expanding the model size. With 150,786 trainable param-
eters, a DDB architecture achieves the same performance
as the IN at the cost of 8 times more parameters. Be-
cause of this the IN model holds an advantage in terms
of memory usage during inference over this alternative
model.

Figure 4 also shows that there is only a modest improve-
ment in the AUC and accuracy by including information
in the IN model from neutral particles. For this reason
and to preserve robustness to increased pileup, in the
following results, we consider the original IN model that
excludes neutral particles.
Figure 5 shows an illustration of how the signal and

background jet mass distributions change after applying a
threshold on the different baseline and DDT-decorrelated
tagger scores. Following Ref. [119], we quantify the im-
pact of these algorithms on the mass decorrelation by
computing the Jensen-Shannon (JS) divergence:

DJS(P ‖ Q) =
1

2
DKL(P ‖M) +

1

2
DKL(Q ‖M), (8)

where M = 1
2 (P + Q) is the average of the normalized

mSD distributions of the background jets passing (P )
and failing (Q) a given tagger score and DKL(P ‖ Q) =∑
i Pi log(Pi/Qi) is the Kullback-Leibler (KL) divergence.

Larger values of the metric 1/DJS correspond to a better
decorrelation.
After applying the mass decorrelation techniques, the

performance of each of the taggers worsens slightly but the
IN algorithm still significantly outperforms the DDB and
DDB+ taggers. Figure 6 displays the trade-off between
the background rejection and 1/DJS at different TPRs
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FIG. 6. The mass decorrelation metric 1/DJS as a function
of background rejection for the baseline and decorrelated IN,
DDB, and DDB+ taggers. The decorrelation is quantified
as the inverse of the JS divergence between the background
mass distribution passing and failing a given threshold cut on
the classifier score. Greater values of this metric correspond
to better mass decorrelation. The background rejection is
quantified as the inverse of the FPR, while the signal efficiency
is equal to the TPR.
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FIG. 7. TPR of the baseline and decorrelated IN, DDB, and
DDB+ taggers as a function of the number of reconstructed
PVs for a 1% FPR.

for the baseline and DDT-decorrelated algorithms. At
a 50% TPR, the decorrelated IN algorithm achieves a
significantly better 1/DJS by a factor of about 2,200
while the background rejection decreases by a factor of
about 3.3 compared to the baseline IN algorithm. At a
1% FPR, the DDT-decorrelated IN tagger has a TPR of
75.6% compared to the DDT-decorrelated DDB (DDB+)
tagger with a 55.9% (72.9%) TPR, corresponding to an
improvement of 35% (4%). Table I summarizes different
performance metrics for the three considered models and
their decorrelated versions. For the DDT models, the
corresponding accuracy is listed for the tagger after the
decorrelation is performed for a FPR of 50%.
To quantify the dependence on the number of pileup

interactions, Fig. 7 shows the performance of the different
algorithms as a function of the number of primary vertices
in the event, which scales linearly with the number of
pileup collisions. Using only charged particles and sec-
ondary vertices as input, the IN tagger is robust against
an increasing number of pileup interactions, exhibiting
behavior similar to the DDB and DDB+ taggers.

VIII. CONCLUSIONS

We presented a novel technique using a graph repre-
sentation of the jet’s constituents and secondary vertices
based on an interaction network to identify Higgs bosons
decaying to bottom quark-antiquark pairs (H → bb) in
LHC collisions. This model can operate on a variable
number of jet constituents and secondary vertices and

does not depend on the ordering schemes of these ob-
jects. The interaction network was trained on an open
simulation dataset released by the CMS Collaboration in
the CERN Open Data Portal. A significant improvement
in performance is observed with respect to two alterna-
tive taggers based on the deep double-b tagger created
by the CMS Collaboration. By design, the interaction
network uses extended low-level input features for par-
ticles and vertices, offers a more flexible representation
of jet data, and is robust against the noise generated by
pileup collisions. Even when trained with the same set
of input features, the interaction network architecture
outperforms the deep double-b architecture. Thus, while
part of the improvement is due to the extended input
representation, additional improvement comes from the
interaction network architecture, despite using on half
as many parameters. The interaction network algorithm
implementation and its training code are available at
Ref. [129].
Together with the best-performing models, we pre-

sented additional models, obtained by applying different
decorrelation techniques between the network score and
the jet-mass distribution. This was done to minimize
the selection bias of the classifier output towards any
values of the jet mass, which would make the algorithms
suitable for physics analyses relying on the jet mass as a
discriminating variable. As expected, the decorrelation
procedure results in a reduction of the H → bb iden-
tification performance. Nevertheless, the decorrelated
interaction network model outperforms the decorrelated
deep double-b models.
Once applied to a full data analysis, this graph-based

tagging algorithm could contribute a substantial improve-
ment to the experimental precision of H → bb measure-
ments, including those sensitive to beyond the standard
model physics and the Higgs boson self-coupling. These
results motivate further exploration of applications based
on interaction networks (and graph neural networks in
general) for object tagging and other similar tasks in
experimental high energy physics.
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APPENDIX A: ADDITIONAL MASS
DECORRELATION METHODS

In this appendix, we describe and compare two addi-
tional mass decorrelation methods to the DDT procedure
described in Section V. In one method, we train two neu-
ral networks simultaneously: the original classifier and
an additional network intended to regress the jet mass,
known as the adversary. The original classifer is trained
to maximally confuse the adversary. After training, the
effect is the classifier is not able to discriminate the jet
mass. In the other method, we train the classifier with
sample weights, such that the QCD background jet mass
distribution is reweighted to be identical to that of the
H → bb signal. We then compare these procedures to the
DDT method.

1. Adversarial training

The secondary adversary network is constructed that
consists of three hidden layers each with 64 nodes. The
adversary is trained simultaneously with the classifier
(interaction network) using the summed post-interaction
feature vector O as its input. From this input, the adver-
sary is trained to predict a one-hot encoding of the pivot
feature mSD, which we aim to decorrelate from the clas-
sifier output. The chosen one-hot encoding corresponds
to 40 mSD bins from 40 to 200GeV. The training be-
gins by initializing the weights from the best classifier
training. The adversary is then pre-trained for 10 epochs
using the Adam algorithm with an initial learning rate of
10−4. During each epoch, the classifier is first trained by
minimizing the total loss

L = LC − λLadversary. (9)

Subsequently, the adversary is trained by minimizing
Ladversary using only the background QCD samples. To
balance tagging performance and mSD correlation, λ = 10
was chosen.
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FIG. 8. Performance of IN algorithm compared to the same
after applying the three techniques described in the text to
decrease the degree to which the tagger score is dependent
on the mass of the jet. This results in a lower performance
because the algorithm is forced to have reduced correlation
with the jet mass.

2. Sample reweighting

While adversarial training requires a complicated tun-
ing process, sample reweighting is a simpler way to achieve
the same goal. Individual QCD events are weighted in
the loss function based on their mass bin as to match the
signal jet mass distribution of the training sample. Given
a background event in certain mass bin, with the number
of background and signal events in that bin denoted as
Nbin

b and Nbin
s , respectively, the event is weighted by

wbin = Nbin
s /Nbin

b .

3. Results

Figure 8 shows a comparison of the ROC curves for the
baseline IN algorithm and the versions that were decorre-
lated using the DDT procedure, adversarial training, and
sample reweighting. Table II summarizes a variety of per-
formance metrics for the decorrelated algorithms including
1/DJS, which quantifies the success of the decorrelation
procedure for a given FPR. As shown in Fig. 8 and Ta-
ble II, the DDT procedure provides the best decorrelation
in terms of 1/DJS, and comparable to the best accuracy,
AUC, background rejection, and tagging efficiency.
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TABLE II. Performance metrics of the three decorrelated IN models, including accuracy, area under the ROC curve, background
rejection at a true positive rate of 30% and 50%, and true positive rate and mass decorrelation metric 1/DJS at a false positive
rate of 1%.

Model Parameters Accuracy AUC 1/εb 1/εb εs 1/DJS

@ εs = 30% @ εs = 50% @ εb = 1% @ εb = 1%

Interaction network, adversarial 18,144 94.6% 98.6% 2381.0 540.1 76.5% 124.6
Interaction network, QCD reweight. 18,144 93.4% 98.3% 1864.9 436.2 73.2% 2051.0
Interaction network, DDT 18,144 93.2% 98.5% 2258.7 540.0 75.6% 29,265.3

APPENDIX B: MODEL IMPLEMENTED IN
ONNX AND TENSORFLOW

In order to integrate the IN algorithm into experimental
workflows, it is often necessary to provide the algorithm in
other formats. For example, the CMS experimental soft-
ware framework CMSSW [130] currently only supports
ONNX [131], TensorFlow [132], and MXNet [133]
models. To perform this conversion, we first translate the
PyTorch model into an ONNX representation using the
built-in exporter. Then the conversion to TensorFlow
is performed with the dedicated TensorFlow backend
for ONNX [134]. The trained model in all three formats
is available at Ref. [129].

APPENDIX C: DATASET FEATURES

The charged particle features used by the IN and DDB
taggers are listed in Table III. The SV features used
by both taggers are listed in Table IV, and the high-
level features used only by the reconstructed DDB tagger
are shown in Table V. Finally, additional features of
charged or neutral particles are listed in Table VI to
demonstrate the change in the performance of the IN
model by including neutral particles.
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TABLE III. Charged particle features. The IN and DDB+ models use all of the features, while DDB algorithm uses the subset
of features indicated in bold.

Variable Description
track_ptrel pT of the charged particle divided by the pT of the AK8 jet
track_erel Energy of the charged particle divided by the energy of the AK8 jet
track_phirel ∆φ between the charged particle and the AK8 jet axis
track_etarel ∆η between the charged particle and the AK8 jet axis
track_deltaR ∆R between the charged particle and the AK8 jet axis
track_drminsv ∆R between the associated SVs and the charged particle
track_drsubjet1 ∆R between the charged particle and the first soft drop subjet
track_drsubjet2 ∆R between the charged particle and the second soft drop subjet
track_dz Longitudinal impact parameter of the track, defined as the distance of closest approach of

the track trajectory to the PV projected on to the z direction
track_dzsig Longitudinal impact parameter significance of the track
track_dxy Transverse (2D) impact parameter of the track, defined as the distance of closest approach

of the track trajectory to the beam line in the transverse plane to the beam
track_dxysig Transverse (2D) impact parameter of the track
track_normchi2 Normalized χ2 of the track fit
track_quality Track quality: undefQuality=-1, loose=0, tight=1, highPurity=2, confirmed=3,

looseSetWithPV=5, highPuritySetWithPV=6, discarded=7, qualitySize=8
track_dptdpt Track covariance matrix entry (pT, pT)
track_detadeta Track covariance matrix entry (η, η)
track_dphidphi Track covariance matrix entry (φ, φ)
track_dxydxy Track covariance matrix entry (dxy, dxy)
track_dzdz Track covariance matrix entry (dz, dz)
track_dxydz Track covariance matrix entry (dxy, dz)
track_dphidz Track covariance matrix entry (dφ, dz)
track_dlambdadz Track covariance matrix entry (λ, dz)
trackBTag_EtaRel ∆η between the track and the AK8 jet axis
trackBTag_PtRatio Component of track momentum perpendicular to the AK8 jet axis, normalized to the track

momentum
trackBTag_PParRatio Component of track momentum parallel to the AK8 jet axis,

normalized to the track momentum
trackBTag_Sip2dVal Transverse (2D) signed impact parameter of the track
trackBTag_Sip2dSig Transverse (2D) signed impact parameter significance of the track
trackBTag_Sip3dVal 3D signed impact parameter of the track
trackBTag_Sip3dSig 3D signed impact parameter significance of the track
trackBTag_JetDistVal Minimum track approach distance to the AK8 jet axis
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Variable Description
sv_ptrel pT of the SV divided by the pT of the AK8 jet
sv_erel Energy of the SV divided by the energy of the AK8 jet
sv_phirel ∆φ between the SV and the AK8 jet axis
sv_etarel ∆η between the SV and the AK8 jet axis
sv_deltaR ∆R between the SV and the AK8 jet axis
sv_pt pT of the SV
sv_mass Mass of the SV
sv_ntracks Number of tracks associated with the SV
sv_normchi2 Normalized χ2 of the SV fit
sv_costhetasvpv cos θ between the SV and the PV
sv_dxy Transverse (2D) flight distance of the SV
sv_dxysig Transverse (2D) flight distance significance of the SV
sv_d3d 3D flight distance of the SV
sv_d3dsig 3D flight distance significance of the SV

TABLE IV. Secondary vertex features. The IN and DDB+ models use all of the features, while the DDB algorithm uses the
subset of features indicated in bold.
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TABLE V. High-level features used by the DDB algorithm.

Variable Description
fj_jetNTracks Number of tracks associated with the AK8 jet
fj_nSV Number of SVs associated with the AK8 jet (∆R < 0.7)
fj_tau0_trackEtaRel_0 Smallest track ∆η relative to the jet axis, associated to the first N-subjettiness axis
fj_tau0_trackEtaRel_1 Second smallest track ∆η relative to the jet axis, associated to the first N-subjettiness

axis
fj_tau0_trackEtaRel_2 Third smallest track ∆η relative to the jet axis, associated to the first N-subjettiness axis
fj_tau1_trackEtaRel_0 Smallest track ∆η relative to the jet axis, associated to the second N-subjettiness axis
fj_tau1_trackEtaRel_1 Second smallest track ∆η relative to the jet axis, associated to the second N-subjettiness

axis
fj_tau1_trackEtaRel_2 Third smallest track ∆η relative to the jet axis, associated to the second N-subjettiness

axis
fj_tau_flightDistance2dSig_0 Transverse (2D) flight distance significance between the PV and the SV with the smallest

uncertainty on the 3D flight distance associated to the first N-subjettiness axis
fj_tau_flightDistance2dSig_1 Transverse (2D) flight distance significance between the PV and the SV with the smallest

uncertainty on the 3D flight distance associated to the second N-subjettiness axis
fj_tau_vertexDeltaR_0 ∆R between the first N-subjettiness axis and SV direction
fj_tau_vertexEnergyRatio_0 SV energy ratio for the first N-subjettiness axis, defined as the total energy of all SVs

associated with the first N-subjettiness axis divided by the total energy of all the
tracks associated with the AK8 jet that are consistent with the PV

fj_tau_vertexEnergyRatio_1 SV energy ratio for the second N-subjettiness axis
fj_tau_vertexMass_0 SV mass for the first N-subjettiness axis, defined as the invariant mass of all tracks from

SVs associated with the first N-subjettiness axis
fj_tau_vertexMass_1 SV mass for the second N-subjettiness axis
fj_trackSip2dSigAboveBottom_0 Track 2D signed impact parameter significance of the first track lifting the combined

invariant mass of the tracks above the b hadron threshold mass (5.2 GeV)
fj_trackSip2dSigAboveBottom_1 Track 2D signed impact parameter significance of the second track lifting the combined

invariant mass of the tracks above the b hadron threshold mass (5.2 GeV)
fj_trackSip2dSigAboveCharm_0 Track 2D signed impact parameter significance of the first track lifting the combined

invariant mass of the tracks above the c hadron threshold mass (1.5 GeV)
fj_trackSipdSig_0 Largest track 3D signed impact parameter significance
fj_trackSipdSig_1 Second largest track 3D signed impact parameter significance
fj_trackSipdSig_2 Third largest track 3D signed impact parameter significance
fj_trackSipdSig_3 Fourth largest track 3D signed impact parameter significance
fj_trackSipdSig_0_0 Largest track 3D signed impact parameter significance associated to the first

N-subjettiness axis
fj_trackSipdSig_0_1 Second largest track 3D signed impact parameter significance associated to the first

N-subjettiness axis
fj_trackSipdSig_1_0 Largest track 3D signed impact parameter significance associated to the second

N-subjettiness axis
fj_trackSipdSig_1_1 Second largest track 3D signed impact parameter significance associated to the second

N-subjettiness axis
fj_z_ratio z ratio variable as defined in Ref. [10]
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TABLE VI. Additional features for charged or neutral particles. The all-particle IN model uses these features.

Variable Description
pfcand_ptrel pT of the charged or neutral particle divided by the pT of the AK8 jet
pfcand_erel Energy of the charged or neutral particle divided by the energy of the AK8 jet
pfcand_phirel ∆φ between the charged or neutral particle and the AK8 jet axis
pfcand_etarel ∆η between the charged or neutral particle and the AK8 jet axis
pfcand_deltaR ∆R between the charged or neutral particle and the AK8 jet axis
pfcand_puppiw Pileup per particle identification (PUPPI) weight [135] for the charged or neutral particle
pfcand_drminsv ∆R between the associated SVs and the charged or netural particle
pfcand_drsubjet1 ∆R between the charged or neutral particle and the first soft drop subjet
pfcand_drsubjet2 ∆R between the charged or neutral particle and the second soft drop subjet
pfcand_hcalFrac Fraction of energy of the charged or neutral particle deposited in the hadron calorimeter
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