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Abstract: We investigate the performance of a jet identification algorithm based on
interaction networks (JEDI-net) to identify all-hadronic decays of high-momentum heavy
particles produced at the LHC and distinguish them from ordinary jets originating from
the hadronization of quarks and gluons. The jet dynamics is described as a set of one-
to-one interactions between the jet constituents. Based on a representation learned from
these interactions, the jet is associated to one of the considered categories. Unlike other
architectures, the JEDI-net models achieve their performance without special handling of
the sparse input jet representation, extensive pre-processing, particle ordering, or specific
assumptions regarding the underlying detector geometry. The presented models give better
results with less model parameters, offering interesting prospects for LHC applications.
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1 Introduction

Jets are collimated cascades of particles produced at particle accelerators. Quarks and
gluons originating from hadron collisions, such as the proton-proton collisions at the CERN
Large Hadron Collider (LHC), generate a cascade of other particles (mainly other quarks
or gluons) that then arrange themselves into hadrons. The stable and unstable hadrons’
decay products are observed by large particle detectors, reconstructed by algorithms that
combine the information from different detector components, and then clustered into jets,
using physics-motivated sequential recombination algorithms such as those described in
Ref. [1–3]. Jet identification, or tagging, algorithms are designed to identify the nature of
the particle that initiated a given cascade, inferring it from the collective features of the
particles generated in the cascade.

Traditionally, jet tagging was meant to distinguish three classes of jets: light flavor
quarks q = u,d, s, c, gluons g, or bottom quarks (b). At the LHC, due to the large collision
energy, new jet topologies emerge. When heavy particles, e.g. W, Z, or Higgs (H) bosons
or the top quark, are produced with large momentum and decay to all-quark final states,
the resulting jets are contained in a small solid angle. A single jet emerges from the overlap
of two (for bosons) or three (for the top quark) jets, as illustrated in Fig. 1. These jets are
characterized by a large invariant mass (computed from the sum of the four-momenta of
their constituents) and they differ from ordinary quark and gluon jets, due to their peculiar
momentum flow around the jet axis.
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Figure 1. Pictorial representations of the different jet categories considered in this paper. Left:
jets originating from quarks or gluons produce one cluster of particles, approximately cone-shaped,
developing along the flight direction of the quark or gluon that started the cascade. Center: when
produced with large momentum, a heavy boson decaying to quarks would result in a single jet, made
of 2 particle clusters (usually referred to as prongs). Right: a high-momentum t → Wb → qq′b

decay chain results in a jet composed of three prongs.

Several techniques have been proposed to identify these jets by using physics-motivated
quantities, collectively referred to as “jet substructure” variables. A review of the different
techniques can be found in Ref. [4]. As discussed in the review, approaches based on
deep learning (DL) have been extensively investigated (see also Sec. 2), processing sets of
physics-motivated quantities with dense layers or raw data representations (e.g. jet images
or particle feature lists) with more complex architectures (e.g. convolutional or recurrent
networks).

In this work, we compare the typical performance of some of these approaches to
what is achievable with a novel jet identification algorithm based on an interaction network
(JEDI-net). Interaction networks [5] (INs) were designed to predict the evolution of physical
systems under the influence of internal and external forces, for example to emulate the effect
of gravitational interactions in n-body systems. The n-body system is represented as a set
of objects subject to one-on-one interactions. The n bodies are embedded in a graph and
these one-on-one interaction functions, expressed as trainable neural networks, are used to
predict the post-interaction status of the n-body system. In a similar fashion, we represent
a jet as a set of particles, each of which is represented by its momentum and embedded
as a vertex in a fully-connected graph. We use neural networks to learn a representation
of each one-on-one particle interaction 1 in the jet, which we then use to define jet-related
high-level features (HLFs). Based on these features, a classifier associates each jet to one
of the five categories shown in Fig. 1.

For comparison, we consider other classifiers based on different architectures: a dense
neural network (DNN) [6] receiving a set of jet-substructure quantities, a convolutional

1Here we refer to the abstract message-passing interaction represented by the edges of the graph and not
the physical interactions due to quantum chromodynamics, which occur before the jet constituents emerge
from the hadronization process.
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neural network (CNN) [7–9] receiving an image representation of the transverse momentum
(pT) flow in the jet 2, and a recurrent neural network (RNN) with gated recurrent units [10]
(GRUs), which process a list of particle features. These models can achieve state-of-the-art
performance although they require additional ingredients: the DNN model requires process-
ing the constituent particles to pre-compute HLFs, the GRU model assumes an ordering
criterion for the input particle feature list, and the CNN model requires representing the
jet as a rectangular, regular, pixelated image. Any of these aspects can be handled in a
reasonable way (e.g. one can use a jet clustering metric to order the particles), sometimes
sacrificing some detector performance (e.g., with coarser image pixels than realistic tracking
angular resolution, in the case of many models based on CNN). It is then worth exploring
alternative solutions that could reach state-of-the-art performance without making these
assumptions. In particular, it is interesting to consider architectures that directly takes as
input jet constituents and are invariant for their permutation. This motivated the study of
jet taggers based on recursive [11] and graph networks [12, 13]. In this context, we aim to
investigate the potential of INs.

This paper is structured as follows: we provide a list of related works in Sec. 2. In
Sec. 3, we describe the utilized data set. The structure of the JEDI-net model is discussed
in Sec. 4 together with the alternative architectures considered for comparison. Results
are shown in Sec. 5. Sections 6 and 7 discuss what the JEDI-net learns when processing
the graph and quantify the amount of resources needed by the tagger, respectively. We
conclude with a discussion and outlook for this work in Sec. 8. Appendix A describes the
design and optimization of the alternative models.

2 Related work

Jet tagging is one of the most popular LHC-related tasks to which DL solutions have been
applied. Several classification algorithms have been studied in the context of jet tagging
at the LHC [14–21] using DNNs, CNNs, or physics-inspired architectures. Recurrent and
recursive layers have been used to construct jet classifiers starting from a list of reconstructed
particle momenta [11–13]. Recently, these different approaches, applied to the specific case
of top quark jet identification, have been compared in Ref. [22]. While many of these studies
focus on data analysis, work is underway to apply these algorithms in the early stages of
LHC real-time event processing, i.e. the trigger system. For example, Ref. [23] focuses
on converting these models into firmware for field programmable gate arrays (FPGAs)
optimized for low latency (less than 1 µs). If successful, such a program could allow for a
more resource-efficient and effective event selection for future LHC runs.

Graph neural networks have also been considered as jet tagging algorithms [24, 25] as
a way to circumvent the sparsity of image-based representations of jets. These approaches

2We use a Cartesian coordinate system with the z axis oriented along the beam axis, the x axis on
the horizontal plane, and the y axis oriented upward. The x and y axes define the transverse plane, while
the z axis identifies the longitudinal direction. The azimuthal angle φ is computed from the x axis. The
polar angle θ is used to compute the pseudorapidity η = − log(tan(θ/2)). We use natural units such that
c = ~ = 1 and we express energy in units of electronVolt (eV) and its prefix multipliers.
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demonstrate remarkable categorization performance. Motivated by the early results of
Ref. [24], graph networks have been also applied to other high energy physics tasks, such
as event topology classification [26, 27], particle tracking in a collider detector [28], pileup
subtraction at the LHC [29], and particle reconstruction in irregular calorimeters [30].

3 Data set description

This study is based on a data set consisting of simulated jets with an energy of pT ≈ 1

TeV, originating from light quarks q, gluons g, W and Z bosons, and top quarks produced
in
√
s = 13TeV proton-proton collisions. The data set was created using the configuration

and parametric description of an LHC detector described in Ref. [23, 31].
Jets are clustered from individual reconstructed particles, using the anti-kT algo-

rithm [3, 32] with jet-size parameter R = 0.8. Three different jet representations are
considered:

• A list of 16 HLFs, described in Ref. [23], given as input to a DNN. The 16 distributions
are shown in Fig. 2 for the five jet classes.

• An image representation of the jet, derived by considering a square with pseudora-
pidity and azimut distances ∆η = ∆φ = 2R, centered along the jet axis. The image
is binned into 100× 100 pixels. Such a pixel size is comparable to the cell of a typical
LHC electromagnetic calorimeter, but much coarser than the typical angular resolu-
tion of a tracking device for the pT values relevant to this task. Each pixel is filled with
the scalar sum of the pT of the particles in that region. These images are obtained
by considering the 150 highest-pT constituents for each jet. This jet representation
is used to train a CNN classifier. The average jet images for the five jet classes are
shown in Fig. 3. For comparison, a randomly chosen set of images is shown in Fig. 4.

• A constituent list for up to 150 particles, in which each particle is represented by 16
features, computed from the particle four-momenta: the three Cartesian coordinates
of the momentum (px, py, and pz), the absolute energy E, pT, the pseudorapidity
η, the azimuthal angle φ, the distance ∆R =

√
∆η2 + ∆φ2 from the jet center,

the relative energy Erel = Eparticle/Ejet and relative transverse momentum prelT =

pparticleT /pjetT defined as the ratio of the particle quantity and the jet quantity, the
relative coordinates ηrel = ηparticle−ηjet and φrel = φparticle−φjet defined with respect
to the jet axis, cos θ and cos θrel where θrel = θparticle − θjet is defined with respect
to the jet axis, and the relative η and φ coordinates of the particle after applying
a proper Lorentz transformation (rotation) as described in Ref. [33]. Whenever less
than 150 particles are reconstructed, the list is filled with zeros. The distributions of
these features considering the 150 highest-pT particles in the jet are shown in Fig. 5
for the five jet categories. This jet representation is used for a RNN with a GRU layer
and for JEDI-net.
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Figure 2. Distributions of the 16 high-level features used in this study, described in Ref. [23].
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Figure 3. Average 100 × 100 images for the five jet classes considered in this study: q (top left),
g (top center), W (top right), Z (bottom left), and top jets (bottom right). The temperature map
represents the amount of pT collected in each cell of the image, measured in GeV and computed
from the scalar sum of the pT of the particles pointing to each cell.

4 JEDI-net

In this work, we apply an IN [5] architecture to learn a representation of a given input graph
(the set of constituents in a jet) and use it to accomplish a classification task (tagging the
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Figure 4. Example of 100 × 100 images for the five jet classes considered in this study: q (top-
left), g (top-right), W (center-left), Z (center-right), and top jets (bottom). The temperature map
represents the amount of pT collected in each cell of the image, measured in GeV and computed
from the scalar sum of the pT of the particles pointing to each cell.

jet). One can see the IN architecture as a processing algorithm to learn a new representation
of the initial input. This is done replacing a set of input features, describing each individual
vertex of the graph, with a set of engineered features, specific of each vertex but whose values
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Figure 5. Distributions of kinematic features described in the text for the 150 highest-pT particles
in each jet.

depend on the connection between the vertices in the graph.
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Figure 6. An example graph with three fully connected vertices and the corresponding six edges.

The starting point consists of building a graph for each input jet. The NO particles in
the jet are represented by the vertices of the graph, fully interconnected through directional
edges, for a total of NE = NO × (NO − 1) edges. An example is shown in Fig. 6 for the
case of a three-vertex graph. The vertices and edges are labeled for practical reasons, but
the network architecture ensures that the labeling convention plays no role in creating the
new representation.

Once the graph is built, a receiving matrix (RR) and a sending matrix (RS) are defined.
Both matrices have dimensions NO×NE . The element (RR)ij is set to 1 when the ith vertex
receives the jth edge and is 0 otherwise. Similarly, the element (RS)ij is set to 1 when the
ith vertex sends the jth edge and is 0 otherwise. In the case of the graph of Fig. 6, the two
matrices take the form:

RS =


E1 E2 E3 E4 E5 E6

O1 0 0 0 1 1 0

O2 1 0 0 0 0 1

O3 0 1 1 0 0 0

 (4.1)

RR =


E1 E2 E3 E4 E5 E6

O1 1 1 0 0 0 0

O2 0 0 1 1 0 0

O3 0 0 0 0 1 1

. (4.2)

The input particle features are represented by an input matrix I. Each column of the
matrix corresponds to one of the graph vertices, while the rows correspond to the P features
used to represent each vertex. In our case, the vertices are the particles inside the jet, each
represented by its array of features (i.e., the 16 features shown in Fig. 5). Therefore, the I
matrix has dimensions P ×NO.

The I matrix is processed by the IN in a series of steps, represented in Fig. 7. The I
matrix is multiplied by the RR and RS matrices and the two resulting matrices are then
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Figure 3.1: Pruning the synapses and neurons of a deep neural network.

the connections that have been removed. The phases of pruning and retraining may be repeated
iteratively to further reduce network complexity. In effect, this training process learns the network
connectivity in addition to the weights — this parallels the human brain development [109] [110],
where excess synapses formed in the first few months of life are gradually "pruned", with neurons
losing little-used connections while preserving the functionally important connections.

On the ImageNet dataset, the pruning method reduced the number of parameters of AlexNet
by a factor of 9× (61 to 6.7 million), without incurring accuracy loss. Similar experiments with
VGG-16 found that the total number of parameters can be reduced by 13× (138 to 10.3 million),
again with no loss of accuracy. We also experimented with the more efficient fully-convolutional
neural networks: GoogleNet (Inception-V1), SqueezeNet, and ResNet-50, which have zero or very
thin fully connected layers. From these experiments we find that they share very similar pruning
ratios before the accuracy drops: 70% of the parameters in those fully-convolutional neural networks
can be pruned. GoogleNet is pruned from 7 million to 2 million parameters, SqueezeNet from 1.2
million to 0.38 million, and ResNet-50 from 25.5 million to 7.47 million, all with no loss of Top-1 and
Top-5 accuracy on Imagenet.

In the following sections, we provide solutions on how to prune neural networks and how to
retrain the pruned model to recover prediction accuracy. We also demonstrate the speedup and
energy efficiency improvements of the pruned model when run on commodity hardware.

3.2 Pruning Methodology

Our pruning method employs a three-step process: training connectivity, pruning connections,
and retraining the remaining weights. The last two steps can be done iteratively to obtain better
compression ratios. The process is illustrated in Figure 3.2 and Algorithm 1.
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Figure 7. A flowchart illustrating the interaction network scheme.

concatenated to form the B matrix, having dimension 2P ×NE :

B =

(
I ×RR
I ×RS

)
. (4.3)

Each column of the B matrix represents an edge, i.e. a particle-to-particle interaction. The
2P elements of each column are the features of the sending and receiving vertices for that
edge. Using this information, a DE-dimensional hidden representation of the interaction
edge is created through a trainable function fR : R2P 7→ RDE . This gives a matrix E with
dimensions DE ×NE . The cumulative effects of the interactions received by a given vertex
are gathered by summing the DE hidden features over the edges arriving to it. This is done
by computing E = ER>R with dimensions DE ×NO, which is then appended to the initial
input matrix I:

C =

(
I

E

)
. (4.4)

At this stage, each column of the C matrix represents a constituent in the jet, expressed
as a (P + DE)-dimensional feature vector, containing the P input features and the DE

hidden features representing the combined effect of the interactions with all the connected
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particles. A trainable function fO : RP+DE 7→ RDO is used to build a post-interaction
representation of each jet constituent. The function fO is applied to each column of C to
build the post-interaction matrix O with dimensions DO ×NO.

A final classifier φC takes as input the elements of the O matrix and returns the
probability for that jet to belong to each of the five categories. This is done in two ways:
(i) in one case, we define the quantities Oi =

∑
j Oij , where j is the index of the vertex in

the graph (the particle, in our case), and the i ∈ [0, DE ] index runs across the DE outputs
of the fO function. The O quantities are used as input to φC : RDO 7→ RN . This choice
allows to preserve the independence of the architecture on the labeling convention adopted
to build the I, RR, and RS matrices, at the cost of losing some discriminating information
in the summation. (ii) Alternatively, the φC matrix is defined directly from the DO ×NO

elements of the O matrix, flattened into a one-dimensional array. The full information from
O is preserved, but φC assumes an ordering of the NO input objects. In our case, we rank
the input particles in descending order by pT.

The trainable functions fO, fR, and φC consist of three DNNs. Each of them has
two hidden layers, the first (second) having N1

n (N2
n = bN1

n/2c) neurons. The model is
implemented in PyTorch [34] and trained using an NVIDIA GTX1080 GPU. The training
data set consists of 630,000 samples, randomly divided in a 2:1 proportion for training and
validation. In addition, a testing data set of 240,000 samples is used.

The architecture of the three trainable functions is determined by minimizing the
loss function through a Bayesian optimization, using the GpyOpt library [35], based on
Gpy [36]. We consider the following hyperparameters:

• The number of output neurons of the fR network, DE (between 4 and 14).

• The number of output neurons of the fO network, DO (between 4 and 14).

• The number of neurons N1
n in the first hidden layer of the fO, fR, and φC network

(between 5 and 50).

• The activation function for the hidden and output layers of the fR network: ReLU [37],
ELU [38], or SELU [39] functions.

• The activation function for the hidden and output layers of the fO network: ReLU,
ELU, or SELU.

• The activation function for the hidden layers of the φC network: ReLU, ELU, or
SELU.

• The optimizer algorithm: Adam [40] or AdaDelta [41].

In addition, the output neurons of the φC network are activated by a softmax function. A
learning rate of 10−4 is used. For a given network architecture, the network parameters
are optimized by minimizing the categorical cross entropy. The Bayesian optimization is
repeated four times. In each case, the input particles are ordered by descending pT value
and the first 30, 50, 100, or 150 particles are considered. The parameter optimization is
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performed on the training data set, while the loss for the Bayesian optimization is estimated
on the validation data set.

Tables 2 and 1 summarize the result of the Bayesian optimization for the JEDI-net
architecture with and without the sum over the columns of the O matrix, respectively. The
best result of each case, highlighted in bold, is used as a reference for the rest of the paper.

Hyperparameter
Number of jet constituents
30 50 100 150

N1
n 6 50 30 50

DE 8 12 4 14
DO 6 14 4 10

fR activation ReLU ReLU SELU SELU
fO activation ELU ReLU ReLU SELU
φc activation ELU SELU SELU SELU
Optimizer Adam Adam Adam Adam

Optimized loss 0.84 0.58 0.62 0.55

Table 1. Optimal JEDI-net hyperparameter setting for different input data sets, when the summed
Oi quantities are given as input to the φc network. The best result, obtained when considering up
to 150 particles per jet, is highlighted in bold.

Hyperparameter
Number of jet constituents
30 50 100 150

N1
n 50 50 30 10

DE 12 12 10 4
DO 6 14 10 14

fR activation ReLU ELU ELU SELU
fO activation SELU SELU ELU SELU
φc activation SELU ELU ELU SELU
Optimizer Adam Adam Adam Adam

Optimized loss 0.63 0.57 0.56 0.62

Table 2. Optimal JEDI-net hyperparameter setting for different input data sets, when all the Oij
elements are given as input to the φc network. The best result, obtained when considering up to
100 particles per jet, is highlighted in bold.

For comparison, three alternative models are trained on the three different represen-
tations of the same data set described in Sec. 3: a DNN model taking as input a list of
HLFs, a CNN model processing jet images, and a recurrent model applying GRUs on the
same input list used for JEDI-net. The three benchmark models are optimized through a
Bayesian optimization procedure, as done for the INs. Details of these optimizations and
the resulting best models are discussed in Appendix A.
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5 Results

Figure 8 shows the ROC curves obtained for the optimized JEDI-net tagger in each of
the five jet categories, compared to the corresponding curves for the DNN, CNN, and
GRU alternative models. The curves are derived by fixing the network architectures to
the optimal values based on Table 2 and App. A and performing a k-fold cross-validation
training, with k = 10. The solid lines represent the average ROC curve, while the shaded
bands quantify the ±1 RMS dispersion. The area under the curve (AUC) values, reported
in the figure, allow for a comparison of the performance of the different taggers.

Jet category DNN GRU CNN JEDI-net
JEDI-net
with

∑
O

TPR for FPR=10%

gluon 0.830± 0.002 0.740± 0.014 0.700± 0.008 0.878± 0.001 0.879± 0.001

light quarks 0.715± 0.002 0.746± 0.011 0.740± 0.003 0.822± 0.001 0.818± 0.001

W boson 0.855± 0.001 0.812± 0.035 0.760± 0.005 0.938± 0.001 0.927± 0.001

Z boson 0.833± 0.002 0.753± 0.036 0.721± 0.006 0.910± 0.001 0.903± 0.001

top quark 0.917± 0.001 0.867± 0.006 0.889± 0.001 0.930± 0.001 0.931± 0.001

TPR for FPR=1%

gluon 0.420± 0.002 0.273± 0.018 0.257± 0.005 0.485± 0.001 0.482± 0.001

light quarks 0.178± 0.002 0.220± 0.037 0.254± 0.007 0.302± 0.001 0.301± 0.001

W boson 0.656± 0.002 0.249± 0.057 0.232± 0.006 0.704± 0.001 0.658± 0.001

Z boson 0.715± 0.001 0.386± 0.060 0.291± 0.005 0.769± 0.001 0.729± 0.001

top quark 0.651± 0.003 0.426± 0.020 0.504± 0.005 0.633± 0.001 0.632± 0.001

Table 3. True positive rates (TPR) for the optimized JEDI-net taggers and the three alternative
models (DNN, CNN, and GRU), corresponding to a false positive rate (FPR) of 10% (top) and 1%
(bottom). The largest TPR value for each case is highlighted in bold.

The algorithm’s tagging performance is quantified computing the true positive rate
(TPR) values for two given reference false positive rate (FPR) values (10% and 1%). The
comparison of the TPR values gives an assessment of the tagging performance in a realistic
usecase, typical of an LHC analysis. Tables 3 shows the corresponding FPR values for
the optimized JEDI-net taggers, compared to the corresponding values for the benchmark
models. The largest TPR value for each class is highlighted in bold. As shown in Fig. 8 and
Table 3, the two JEDI-net models outperform the other architectures in almost all cases.
The only notable exception is the tight working point of the top-jet tagger, for which the
DNN model gives a TPR higher by about 2%, while the CNN and GRU models give much
worse performance.

The TPR values for the two JEDI-net models are within 1%. The only exception is
observed for the tight working points of the W and Z taggers, for which the model using
the O sums shows a drop in TPR of ∼ 4%. In this respect, the model using summed O

features is preferable (despite this small TPR loss), given the reduced model complexity
(see Section 7) and its independence on the labeling convention for the particles embedded
in the graph and for the edges connecting them.
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Figure 8. ROC curves for JEDI-net and the three alternative models, computed for gluons (top-
left), light quarks (top-right), W (center-left) and Z (center-right) bosons, and top quarks (bottom).
The solid lines represent the average ROC curves derived from 10 k-fold trainings of each model.
The shaded bands around the average lines are represent one standard deviation, computed with
the same 10 k-fold trainings.
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Figure 9. Two-dimensional distributions between O2 and τ (β=1)
1 (left) and O3 and τ (β=2)

2 (right),
for jets originating from (top to bottom) light flavor quarks, gluons, W bosons, Z bosons, and top
quarks. For each distribution, the linear correlation coefficient ρ is reported.

6 What did JEDI-net learn?

In order to characterize the information learned by JEDI-net, we consider the O sums
across the NO vertices of the graph (see Section 4) and we study their correlations to
physics motivated quantities, typically used when exploiting jet substructure in a search.
We consider the HLF quantities used for the DNN model and the N -subjettiness variables
τ
(β)
N [42], computed with angular exponent β = 1, 2.

Not all the O sums exhibit an obvious correlation with the considered quantities, i.e.,
the network engineers high-level features that encode other information than what is used,
for instance, in the DNN model.

Nevertheless, some interesting correlation pattern between the physics motivated quan-
tities and the Oi sums is observed. The most relevant examples are given in Fig. 9, where
the 2D histograms and the corresponding linear correlation coefficient (ρ) are shown. The
correlation between O1 and the particle multiplicity in the jet is not completely unexpected.
As long as the O quantities aggregated across the graph have the same order of magnitude,
the corresponding sum O would be proportional to jet-constituent multiplicity.
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The strong correlation between the O4 and τ
(β=2)
1 (with ρ values between 0.69 and 0.97,

depending on the jet class) is much less expected. The τβ1 quantities assume small values
when the jet constituents can be arranged into a single sub-jet inside the jet. Aggregating
information from the constituent momenta across the jet, the JEDI-net model based on the
O quantities learns to build a quantity very close to τ (β=2)

1 . The last two rows of Fig. 9 show
two intermediate cases: the correlation between O2 and τ (β=1)

3 and between O9 and τ (β=2)
3 .

The two O sums considered are correlated to the corresponding substructure quantities,
but with smaller (within 0.48 and 0.77) correlation coefficients.

7 Resource comparison

Table 4 shows a comparison of the computational resources needed by the different models
discussed in this paper. The best-performing JEDI-net model has more than twice the
number of trainable parameters than the DNN and GRU model, but approximately a factor
of 6 less parameters than the CNN model. The JEDI-net model based on the summed O
features achieves comparable performance with about a factor of 4 less parameters, less
than the DNN and GRU models. While being far from expensive in terms of number of
parameters, the JEDI-net models are expensive in terms of the number of floating point
operations (FLOP). The simple model based on O sums, using as input a sequence of 150
particles, uses 458 MFLOP. The increase is mainly due to the scaling with the number
of vertices in the graph. Many of these operations are the ×0 and ×1 products involving
the elements of the RR and RS matrices. The cost of these operations could be reduced
with an IN implementation optimized for inference, e.g., through an efficient sparse-matrix
representation.

Model Number of Number of Inference
parameters FLOP time/batch [ms]

DNN 14725 27 k 1.0± 0.2

CNN 205525 400 k 57.1± 0.5

GRU 15575 46 k 23.2± 0.6

JEDI-net 33625 116 M 121.2± 0.4

JEDI-net
8767 458 M 402± 1

with
∑
O

Table 4. Resource comparison across models. The quoted number of parameters refers only to
the trainable parameters for each model. The inference time is measured by applying the model
to batches of 1000 events 100 times: the 50% median quantile is quoted as central value and the
10%-90% semi-distance is quoted as the uncertainty. The used GPU is an NVIDIA GTX 1080 with
8 GB memory, mounted on a commercial desktop with an Intel(R) Xeon(R) CPU, operating at a
frequency of 2.60GHz. The tests were executing in python 3.7, with no other concurrent process
running on the machine.

In addition, we quote on Table 4 the average inference time on a GPU. The inference
time is measured applying the model to 1000 events, as part of a python application based
on TensorFlow [43]. To this purpose, the JEDI-net models, implemented and trained in
Pytorch, are exported to ONNX [44] and then loaded in Tensorflow. The quoted time
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includes the data-loading, which happens at the first inference and is different for different
event representations (e.g., lighter for the JEDI-net models than for the CNN model). The
used GPU is an NVIDIA GTX 1080 with 8 GB memory, mounted on a commercial desktop
with an Intel(R) Xeon(R) CPU, operating at a frequency of 2.60GHz. The tests were
executing in python 3.7, with no other concurrent process running on the machine. Given
the larger number of operations, the GPU inference time for the two IN models is much
longer than for the other models.

While our implementation could certainly be improved with a dedicated resource op-
timization program, e.g., by applying neural network pruning [45, 46], or reducing the
numerical precision [47, 48], the current situation makes INs particularly difficult to de-
ploy in the online selection environment (L1 trigger system and HLT) of a typical LHC
experiment. A dedicated R&D effort is needed to reduce the resource consumption in a
realistic environment in order to benefit from the improved accuracy that INs can achieve.
Thinking in terms of an online version of the algorithm running in the trigger system of
the LHC experiments, one could also sacrifice part of the model accuracy by reducing the
maximum number of particles in each jet representation, similarly to what is done with
many resource-intense rule-based algorithms.

8 Conclusions

This paper presents JEDI-net, a jet tagging algorithm based on interaction networks. Ap-
plied to a data set of jets from light-flavor quarks, gluons, vector bosons, and top quarks,
this algorithm achieves better performance than models based on dense, convolutional, and
recurrent neural networks, trained and optimized with the same procedure on the same data
set. As other graph networks, JEDI-net offers several practical advantages that make it
particularly suitable for deployment in the data-processing workflows of LHC experiments:
it can directly process the list of jet constituent features (e.g. particle four-momenta), it
does not assume specific properties of the underlying detector geometry, and it is insensi-
tive to any ordering principle applied to the input jet constituents. For these reasons, the
implementation of this and other graph networks is an interesting prospect for future runs
of the LHC. On the other hand, the current implementation of this model demands large
computational resources and a large inference time, which make the use of these models
problematic for real-time selection and calls for a dedicated program to optimize the model
deployment on typical L1 and HLT environments.

The quantities engineered by one of the trained IN models exhibit interesting correlation
patterns with some of the jet substructure quantities proposed in literature, showing that
the model is capable of learning some of the relevant physics in the problem. On the
other hand, some of the engineered quantities do not exhibit striking correlation patterns,
implying the possibility of a non trivial insight to be gained by studying these quantities.
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Appendix

A Alternative models

The three benchmark models considered in this work are derived through a Bayesian op-
timization of their hyperparameters, performed using the GpyOpt library [35], based on
Gpy [36]. For each iteration, the training is performed using early stopping to prevent
over-fitting and to allow a fair comparison between different configurations. The data set
for training and validation consists of 630,000 jets. Two thirds of the data set are used
for training, while the remaining events are used for validation. A data set of 240,000 jets
is used for testing purposes. The loss for the Bayesian optimization is estimated on the
validation data set. The CNN and GRU networks are trained on four different input data
sets, obtained considering the first 30, 50, 100, or 150 highest-pT jet constituents. The
DNN model is trained on quantities computed from the full list of particles.

The DNNmodel consists on a multilayer perceptron, alternating dense layers to dropout
layers. The optimal architecture is determined optimizing the following hyperparameters:

• Number of dense layers (NDL) between 1 and 3.

• Number of neurons per dense layer (nn): 10, 20, . . . , 100.

• Activation functions for the dense layers: ReLU, ELU, or SELU.

• Dropout rate: between 0.1 and 0.4.

• Batch size: 50, 100, 200, or 500.

• Optimization algorithm: Adam, Nadam [49], or AdaDelta.

The optimization process gives as output an optimal architecture with three hidden layers
of 80 neurons each, activated by ELU functions. The best dropout rate is found to be 0.11,
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when a batch size of 50 and the Adam optimizer are used. This optimized network gives a
loss of 0.66 and an accuracy of 0.76.

The CNN model consists of two-dimensional convolutional layers with batch normal-
ization, followed by a set of dense layers. A 2× 2 max pooling layer is applied after the fist
convolutional layer. The optimal architecture is derived optimizing the following hyperpa-
rameters:

• Number of convolutional layers NCL between 1 and 3.

• Number of convolutional filters nf in each layer (10, 15, 20, 25, or 30).

• Convolutional filter size: 3× 3, 5× 5, 7× 7, or 9× 9.

• Max pooling filter size: 2× 2, 3× 3, or 5× 5.

• Activation functions for the convolutional layers (ReLU, ELU, or SELU).

• Number of dense layers NDL between 1 and 3.

• Number of neurons nn per dense layer: 10, 20, . . . , 60.

• Activation functions for the dense layers: ReLU, ELU, or SELU.

• Dropout rate: between 0.1 and 0.4.

• Batch size: 50, 100, 200, or 500.

• Optimization algorithm: Adam, Nadam, or AdaDelta.

The stride of the convolutional filters is fixed to 1 and “same” padding is used. Table 5
shows the optimal sets of hyperparameter values, obtained for the four different data set
representations. While the optimal networks are equivalent in performance, we select the
network obtained for ≤ 50 constituents, because it has the smallest number of parameters.

The recurrent model consists of a GRU layer feeding a set of dense layers. The following
hyperparameters are considered:

• Number of GRU units: 50, 100, 200, 300, 400, or 500.

• Activation functions for the GRU layers: ReLU, ELU, or SELU.

• Number of dense layers: between 1 and 4.

• Number of neurons per dense layer: 10, 20, . . ., 100.

• Activation functions for the dense layers: ReLU, ELU, or SELU.

• Dropout rate: between 0.1 and 0.4.

• Batch size: 50, 100, 200, or 500.

• Optimization algorithm: Adam, Nadam, or AdaDelta.

The best hyperparameter values are listed in Table 6. As for the CNN model, the best
performance is obtained when the list of input particles is truncated at 50 elements.
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Hyperparameter
Number of jet constituents
30 50 100 150

NCL 3 1 1 3
nf 20 10 30 30

Filter size 3× 3 3× 3 3× 3 3× 3

Max pooling size 2× 2 5× 5 5× 5 2× 2

Conv. activation ReLU ELU ELU ReLU
NDL 2 3 3 3
nn 60 50 60 60

Dense activation SELU ELU ELU ELU
Dropout 0.11 0.1 0.4 0.1
Batch size 200 500 100 50
Optimizer Adam Adam Adam Adam

Optimized loss 0.88 0.73 0.74 0.74
Optimized accuracy 0.67 0.74 0.74 0.74

Table 5. Optimal CNN hyperparameter setting for different input data sets.

Hyperparameter
Number of jet constituents

30 50 100 150
nu 100 50 200 50
NDL 3 1 3 4
nn 70 40 40 100

Dense activation SELU SELU ReLU ELU
Dropout 0.40 0.10 0.22 0.10
Batch size 500 500 500 500
Optimizer Adam Adam Adam AdaDelta

Optimized loss 0.78 0.71 0.78 0.85
Optimized accuracy 0.72 0.75 0.73 0.68

Table 6. Optimal GRU hyperparameter settings for different input data sets.
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