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• Amount and complexity of high-energy physics data increases dramatically from 2025 onward

• Traditional algorithms will require too much CPU time

• Machine learning can solve combinatorially-scaling problems in constant time, but must be fast 
enough
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FPGA coprocessors. We run a VM in the Azure East 2
Datacenter, deploying CMSSW inside a Docker container,
and communicate with the FPGA coprocessors located
in the same facility.

We measure the total round-trip latency of the infer-
ence request as seen by CMSSW, starting from the trans-
mission of the image and ending with the receipt of the
classification results. The latencies are shown in Fig. 10
for a linear latency scale (top) and a logarithmic latency
scale (bottom). The on-prem performance is shown in
orange, with a mean inference time of 10 ms, and the
remote performance is shown in blue, with a mean in-
ference time of 60 ms. From internal Brainwave tim-
ing tests, the featurizer inference step performed on the
FPGA takes 1.8 ms and the classifier inference step per-
formed on the CPU is similar. The remaining time in
the 10 ms is primarily used for network transmission.

Fig. 10: Total round trip inference latencies for
ResNet-50 on the Brainwave system both remote and
on-prem. The top plot is linear in time and the bottom
plot is logarithmic in time.

The remote performance can be as fast as 30 ms
with a median value of 50 ms, and there are long tails
out to hundreds of ms at the per-mille level. The mea-
sured latency is strongly dependent on network condi-
tions which can cause the structures seen in Fig. 10.

Due to the speed of light, there is a hard physical limit
in the transmission time of the signal to the Azure East
2 Datacenter and back to Fermilab, which we estimate
to be around 10 ms. The physical distance between the
experimental computing cluster and the remote data-
center will limit any cloud-based inference speeds.

After comparing the remote versus on-prem latency,
we performed a scaling test to estimate how many co-
processor services would be needed to support large-
scale deployment in a production environment. A given
number of simultaneous processes were run using the
batch system at Fermilab and the round-trip latency
was measured. All jobs connected to a single Brain-
wave service. This test corresponds to a “worst-case”
estimation of the scaling of a single service because each
process only executed the Brainwave test module that
performs inference on jet images. In an actual produc-
tion process, the test module would run alongside many
other modules (see Fig. 1), greatly reducing the prob-
ability of simultaneous requests to the cloud service.
The results of the test are shown in Fig. 11. The mean,
standard deviation, and long tail for the round trip la-
tency all tend to increase with more simultaneous jobs,
but only moderately. It should also be noted that some
calls timed out during the largest-scale test with 500 si-
multaneous processes, leading to a failure rate of 1.8%,
while the other tests had zero or negligible failures.

We also measure the throughput based on the total
time for each simultaneous process to complete serial
processing of 5000 jet images. These results are shown
in Fig. 12. Though the round trip latency for a single
request has a large variance, the total time to process
the full series of images is remarkably consistent. This
demonstrates the e cient load balancing performed by
the Brainwave server.

With the total time measured for all simultane-
ous processes to complete, we can compute the total
throughput of the Brainwave service. Recall from above
that while the cloud service inference round trip latency
is 60 ms, on average, the latency for the featurizer in-
ference on the FPGA itself is approximately 1.8 ms.
When we run multiple simultaneous CPU processes
that all send requests to one service, we fully popu-
late the pipeline of data streaming into the service. This
keeps the FPGA occupied, increasing its duty cycle and
the total inference throughput of the service. This is il-
lustrated in Fig. 12, where we show the throughput of
the service in inferences per second as a function of the
number of simultaneous CPU processes accessing the
service. As the number of simultaneous processes in-
creases, the number of inferences per second increases,
because of the increased pressure on the pipeline of the
FPGA service. The mean latency, shown in Fig. 11,

FPGA-accelerated machine learning inference as a service for particle physics computing 13

Table 2: A summary comparison of total inference time for Brainwave, CPU, and GPU performance

Type Hardware hInference timei Max throughput Setup

CPU Xeon 2.6 GHz, 1 core 1.75 seconds 0.6 img/s CMSSW, TF v1.06
CPU i7 3.6 GHz, 1 core 500 ms 2 img/s python, TF v1.10
CPU i7 3.6 GHz, 8 core 200 ms 5 img/s python, TF v1.10

GPU (batch=1) NVidia GTX 1080 100 ms 10 img/s python, TF v1.10
GPU (batch=32) NVidia GTX 1080 9 ms 111 img/s python, TF v1.10
GPU (batch=1) NVidia GTX 1080 7 ms 143 img/s TF internal, TF v1.10
GPU (batch=32) NVidia GTX 1080 1.5 ms 667 img/s TF internal, TF v1.10

Brainwave Altera Artix 10 ms 660 img/s CMSSW, on-prem
Brainwave Altera Artix 60 ms 660 img/s CMSSW, remote

Fig. 14: Standalone GPU inference time per image (top)
and images per second (bottom) as a function of batch
size for the TensorFlow o�cial ResNet-50 model com-
pared with the Azure ResNet-50 model. The dashed
line indicates a time of 10 ms, consistent with the on-
prem inference time of the Brainwave system.

GPU comparisons can be more nuanced4, depend-
ing on the model implementation and batch sizes. How-
ever, for a batch of one image, we can say that the

4 For that matter, CPU comparisons can also be nuanced
when considering devices with many cores and large RAM.
However, they do not fit in with the CMSSW computing model.

Brainwave inference latencies, both on-prem and re-
mote including network latencies, are of a similar order
to local, physically connected GPU inference times. The
GPU and Brainwave have similar maximum through-
put, about 660 images per second, though the former
only achieves this with large batch size and the lat-
ter achieves this when accessed with many CPUs si-
multaneously. It should be emphasized that Brainwave
achieves this performance using single-image requests
and including network infrastructure for deployment as
a service, while the GPU requires a large batch size for
the same performance and is directly connected to the
CPU via PCIe (Peripheral Component Interconnect ex-
press). As will be described in Sec. 6, future studies are
needed to better understand the scalability and cost of
di↵erent heterogeneous computing architectures. The
performance of other coprocessors as services, includ-
ing GPUs, is another item for future study.

6 Summary and outlook

The current computing model for particle physics will
not su�ce to keep up with the expected future increases
in dataset size, detector complexity, and event mul-
tiplicity. Single-threaded CPU performance has stag-
nated in recent years; therefore, it is no longer viable
to rely on improvements in the clock speed of general-
purpose computing. Industry trends towards hetero-
geneous computing—mixed hardware computing plat-
forms with CPUs communicating with GPUs, FPGAs,
and ASICs as coprocessors—provide a potential solu-
tion that can perform calculations more than an or-
der of magnitude faster than CPUs. The new coproces-
sor hardware is geared towards machine learning algo-
rithms, which are parallelizable, high-performing even
with reduced precision, and energy e�cient. Therefore,
to best utilize the new computing hardware, it is im-
portant to adopt machine learning algorithms in par-
ticle physics computing. Fortunately, machine learning
is very common in particle physics, from simulation to
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An FPGA-aaS reaches the same throughput as a locally connected GPU, the 
former by having many CPUs access it and the latter by setting a high batch size
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FPGA coprocessors. We run a VM in the Azure East 2
Datacenter, deploying CMSSW inside a Docker container,
and communicate with the FPGA coprocessors located
in the same facility.

We measure the total round-trip latency of the infer-
ence request as seen by CMSSW, starting from the trans-
mission of the image and ending with the receipt of the
classification results. The latencies are shown in Fig. 10
for a linear latency scale (top) and a logarithmic latency
scale (bottom). The on-prem performance is shown in
orange, with a mean inference time of 10 ms, and the
remote performance is shown in blue, with a mean in-
ference time of 60 ms. From internal Brainwave tim-
ing tests, the featurizer inference step performed on the
FPGA takes 1.8 ms and the classifier inference step per-
formed on the CPU is similar. The remaining time in
the 10 ms is primarily used for network transmission.

Fig. 10: Total round trip inference latencies for
ResNet-50 on the Brainwave system both remote and
on-prem. The top plot is linear in time and the bottom
plot is logarithmic in time.

The remote performance can be as fast as 30 ms
with a median value of 50 ms, and there are long tails
out to hundreds of ms at the per-mille level. The mea-
sured latency is strongly dependent on network condi-
tions which can cause the structures seen in Fig. 10.

Due to the speed of light, there is a hard physical limit
in the transmission time of the signal to the Azure East
2 Datacenter and back to Fermilab, which we estimate
to be around 10 ms. The physical distance between the
experimental computing cluster and the remote data-
center will limit any cloud-based inference speeds.

After comparing the remote versus on-prem latency,
we performed a scaling test to estimate how many co-
processor services would be needed to support large-
scale deployment in a production environment. A given
number of simultaneous processes were run using the
batch system at Fermilab and the round-trip latency
was measured. All jobs connected to a single Brain-
wave service. This test corresponds to a “worst-case”
estimation of the scaling of a single service because each
process only executed the Brainwave test module that
performs inference on jet images. In an actual produc-
tion process, the test module would run alongside many
other modules (see Fig. 1), greatly reducing the prob-
ability of simultaneous requests to the cloud service.
The results of the test are shown in Fig. 11. The mean,
standard deviation, and long tail for the round trip la-
tency all tend to increase with more simultaneous jobs,
but only moderately. It should also be noted that some
calls timed out during the largest-scale test with 500 si-
multaneous processes, leading to a failure rate of 1.8%,
while the other tests had zero or negligible failures.

We also measure the throughput based on the total
time for each simultaneous process to complete serial
processing of 5000 jet images. These results are shown
in Fig. 12. Though the round trip latency for a single
request has a large variance, the total time to process
the full series of images is remarkably consistent. This
demonstrates the e cient load balancing performed by
the Brainwave server.

With the total time measured for all simultane-
ous processes to complete, we can compute the total
throughput of the Brainwave service. Recall from above
that while the cloud service inference round trip latency
is 60 ms, on average, the latency for the featurizer in-
ference on the FPGA itself is approximately 1.8 ms.
When we run multiple simultaneous CPU processes
that all send requests to one service, we fully popu-
late the pipeline of data streaming into the service. This
keeps the FPGA occupied, increasing its duty cycle and
the total inference throughput of the service. This is il-
lustrated in Fig. 12, where we show the throughput of
the service in inferences per second as a function of the
number of simultaneous CPU processes accessing the
service. As the number of simultaneous processes in-
creases, the number of inferences per second increases,
because of the increased pressure on the pipeline of the
FPGA service. The mean latency, shown in Fig. 11,

Via internet

Local
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Fig. 3: A comparison of QCD (left) and top (right) jet images averaged over 5,000 jets.

Model Accuracy AUC 1/"B("S = 30%)
Floating point 0.9009 0.9797 670.8

Quant. 0.8413 0.9754 414.6
Quant., f.t. 0.9296 0.9825 970.7
Brainwave 0.9257 0.9821 934.8

Brainwave, f.t. 0.9348 0.9830 999.6

Table 1: The performance of the evaluated models on
the top tagging dataset.

characteristic (ROC) curve is a graph of the false pos-
itive rate (background QCD jet e ciency) as a func-
tion of the true positive rate (top quark jet e ciency.)
It is customary to report three metrics for the per-
formance of the network on the top tagging dataset:
model accuracy, area under the ROC curve (AUC),
and background rejection power at a fixed signal ef-
ficiency of 30%, 1/"B("S = 30%). Fig. 4 shows the
ROC curve comparison for the transfer learning ver-
sion of ResNet-50 as well as the fully retrained fea-
turizer with custom weights. In Table 1, the accuracy,
AUC, and 1/"B("S = 30%) values are listed for each
model considered. The performance of the retrained
ResNet-50 compared to other models developed for
this dataset is state-of-the-art; the best performance is
1/"B("S = 30%) ⇡ 1000.

One other consideration in this study is the size of
the model. The typical particle physics models used
for top tagging are often several orders of magnitude
smaller than ResNet-50 in terms of the numbers of pa-
rameters and operations. However, it should be noted
that the best-performing models to date (ResNeXt50
and a directed graph CNN) [32,24] are within a factor
of a few in size with respect to the ResNet-50 model.
We emphasize here that this study is a proof-of-concept
for the physics performance and that there are many
other very challenging, computationally intensive algo-

Fig. 4: The ROC curves showing the performance of
the floating point and quantized versions (before fine-
tuning, after fine-tuning, and using the Brainwave ser-
vice) of the ResNet-50 top tagging model.

rithms where machine learning is being explored. We
anticipate that for these looming challenges, the size of
the models will continue to grow to meet the demands
of new experiments.

3.3 Neutrino flavor identification at NOvA

Neutrino event classification can also benefit from ac-
celerating the inference of large ML models. In this
section, due to a lack of publicly available neutrino
datasets, we do not fully quantify the performance of
a particular model. Instead, we present a workflow to
demonstrate that this work is applicable beyond the
LHC.
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