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- Amount and complexity of high-energy physics data increases dramatically from 2025 onward

- Traditional algorithms will require too much CPU time

- Machine learning can solve combinatorially-scaling problems in constant time, but must be fast
enough
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- Example challenge
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An FPGA-aaS reaches the same throughput as a locally connected GPU, the
ReSU |tS former by having many CPUs access it and the latter by setting a high batch size
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