Production and Mechanical Characterization of Electrospun Ceramic/metallic Nanofiber Sujit Bidhar¹, Valeri Goss², Bob Zwaska¹ ¹Fermi National Accelerator Lab, Batavia, IL-60510 ²Department of Chemistry, Chicago State University, Chicago, IL-60628 FERMILAB-POSTER-19-138-AD-LDRD

Introduction and Objectives

- In high energy particle physics there is a demand for multiulletMW high performance particle production targets.
- Nanofiber microstructure will have better performance than ulletcurrent solid targets in mitigating increased thermal tress waves, radiation damage.

Electrospinning process

Objective is to fabricate ceramic/metallic nano-fiber with high resistance strength, thermal shock using IOW cost electrospinning process.

Ceramic/metallic nanofiber production

Fig. 2c Details of process zone

Inorganic precursor: (Zirconium Carbonate +Acetic Acid \rightarrow Zirconia Ammonium meta-tungstate + D.I. Water \rightarrow WO₃) Polymer solution : PVP+Ethanol/Aceton

Nano-fiber mat

Fig. 3 Lab scale electrospin unit

- Much safe to use $(120W \rightarrow 4W!)$
- Mobile compact unit \rightarrow Can be run on 9 or 12 V battery

Calcination (Heat treatment)

Fig. 4 Ceramic/metallic nanofibers after heat treatment

Single nanofiber micro-mechanical testing-**Atomic Force microscopy**

Summary and Future work

- Set up a low cost, low power, safer electrospinning unit.
- Success in fabricating metallic and ceramic nanofiber.
- AFM technique to evaluate single nanofiber modulus.
- Ceramic nanofiber looks promising as future candidate

Fig. 5c Elastic modulus mapping ZO₂

target material.

Future work

- Single fiber bending test for tensile strength.
- Single fiber thermal properties evaluation.
- Radiation damage studies using ion irradiation.

Email: sbidhar@fnal.gov

Fermi National Accelerator Laboratory

This manuscript has been authored by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy, Office of Science, Office of High Energy Physics.