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0. Danilov theorem

Consider a symplectic map of the plane (corresponding to a

K(q.,p) = inv (q.p) » M(q.p)
one-turn map of an accelerator), M : R? — R?, pr D a.
6
(¢.p) = M(q,p), R
where the prime symbols () indicate the transformed phase — ' ;’ 3
space coordinates. Let R, be the rotation angle in the phase Aw | 4"’ ‘0
space (q,p) around a stable fixed point between two consec- Q—’ q '8 q
utive iterations (g,, p,) and (¢,.1, p,+1). Then, the limit, when it ~—J . "‘11 . Pn+1
exists, 7 )
1 N 2 :
= lim —— R, q
g Ngnoo 2N nz;

Is called the rotation humber (the betatron frequency of the

one-turn map) for that particular orbit of the map M. Corollary (1)

Theorem (Danilov theorem) V(K) = i_? where  J(K) = QL /q oG, 0)da.
T Jq

Suppose a symplectic map of the plane, is the partial action calculated as a sector integral around the
(¢, p") =M(q,p), stable fixed point. For a linear map (v = const),
IS integrable with the invariant (integral) K(q,p), then its v=J/J
Poincareé rotation number is '
¢ o ] - Corollary (2) d
IC) = — d - d Y . . .
vk) /q <0p> ! ]{ (8p) B The Hamiltonian function corresponding to the map M is
where the integrals are evaluated along the invariant curve. H(K) = J'(K).
2. McMillan Map
7T . P v /1T . 2w (K) =1+ d(IC)/A/d(IC)2 + 4K b,
{pl] N p‘lgp“} | // ; |- 1 {p’} ~ |—q+ap/(bp*+ 1)} | where d(K) = a?/4+ Kb — 1.
The map has polygon invariants: o ﬁf McMillan map has the following integral: Y 56)
squares for |¢,p| < 1 and hexagons | | A1 16 Klg,p| = bg*p® + ¢+ p* — aqp, 0.25
otherwise. When |¢,p| < 1 the map 3| ZF7 NEENE L . 020
. . AV L. 1/10; which is non-negative for b > 0 and |a| < 2.
IS linear and betatron frequency is AL/ T/ . 0.15
A/ / The rotation number can be expressed
1 —2 T : _ 0.10
V= -. / - _ through Jacobi elliptic functions as follows:
‘ ST LT ;i 6 e | o
The rotation number in nonlinear layer v(K) = i arcds ((d(lC)2 n 4/Cb) 7w) | R S S
can be found using Figure 1: The left plot contains iterations of the map (black (w) q
B > 9 o 9 dots). The blue and the red lines are the symmetry lines for the where K(w) is the complete elliptic integral Fiaure 2- The left blot contains iterations (areen
Siotal = (2 + z) 1 042 = ?042 T8atd map, p— f(g)/2anc P=4q reSpectively-l]thbla?k dashed line of the first kind and the inverse Jacobi func- dogts) of the MCMiIIIOan map (a = 1.6, b — 1)_(gCOnstant
Siyp =(a+1)"—50° =5a"+2a+1  shows the force function f(q) = p + *—5".. Right plot is the tion, arcds(z, w), is defined as follows level sets of the invariant are shown with blue lines

rotation number as a function of a, where « iIs the invariant of

and then . . U ” o 00 dt and the corresponding value of the invariant K is
17 13, /da 5 g motion defined through initial conditions on the invariant curve a,rcds(:c, w) = / 2 - 2 | shown in red. Right plot is the rotation number as a
p=—= = . as (0, po) = (@, 0); e /(4w +w? - 1) function of its integral.

4. 4D McMillan Map Integrable in polar coordiantes

3. Nonintegrable Map (Symplectic Octupole Map)

As our third example, we will consider a non-integrable Hénon cubic map: Consider the 4D map which can be realized in accelerators by employing the electron lens:
/ o _ _
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At small amplitudes this map is linear and the rotation number is v ~ arccos(a/2)/(27). At large y%‘ = ! i+ Bp brit] e g = Pri W?
. . . . . 0
amplitudes this map becomes chaotic and unstable. Let us propose an approximate integral o Y . f 0y 0 + arctan -
: : : oy : — — T /
(the exact integral does not exist since it is a non-integrable map). = Y- | T Sy Py T Dy Do
2 2 € 99 e 2 2 2 2 ' ' i
Kapprox[¢, 0] = p° + ¢ —apq — B T (P*+¢*—apq) +0 (). with two integrals of motion
o 2
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) | R —— Klroprope) = bripp + 07 —arp +pp+ 25 and pp=2py — ypo.
‘J 4 :, if;”,ﬁ /;??{gfﬁ?”ﬂﬂ. N ; f fﬁify;,;;ﬁ?:ﬁiﬁggi% . . . .
_.Aa=-0.85| S KaedaP) |\ ak Using Danilov theorem the radial and angular rotation numbers are
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i Vi K(x) and F(¢, k), and, II(x |a) and I1(¢, s |«) are the complete and incomplete elliptic integrals of
0.32— 0.32x the first and the third kinds respectively. (; < 0 < (; < (3 are the roots of the polynomial
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Figure 3: The top row: phase-space trajectories of a cubic map, obtained by tracking with « = —0.85 (left plot) and = Figure 4: Left plots show the radial v, (solid lines) and angular v, (dashed lines) rotation numbers as a function of
level sets of the approximate invariant (right plot), on the same scale. The red and blue lines in the top left plot first invariant KC. Different curves correspond to different values of the second invariant py = 0,0.5, 1,2 (shown with
corresponds to symmetry lines p = g and p = (a q + € ¢*) /2 respectively. The bottom row: the left plot shows the red, blue, green and purple). The second plot shows the log of absolute value of Fourier transform for Cartesian
rotation number as a function of initial conditions in the form ¢, = py, by using averaging (black solid line), and by coordinates. Two right plots shows the parametrization of map. The first one contains r, p, and 6 as functions of

using the Danilov theorem numerically (orange dashed) from the tracking data. The red solid line corresponds to continuous parameter t. When sampled with ¢ = frr’(apr/a/C) dr continuous functions correspond to application of
the rotation number obtained from the approximate invariant using the Danilov theorem as well. The right bottom map (shown with dots). The second plot shows the continuous z-y trajectory (red line) and iterations of the

plot shows the dependence of v as a function of action J, from tracking (orange dashed) and from the mapping (green dots). The black part of the red curve represents one radial oscillation. The map parameter is
approximate invariant (red solid). a = 1.6.
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