
 Neural ODEs for Light Curves
Classifying and Approximating Light Curves 

Anand Jain, University of Chicago
LSST Data Science Program at Fermilab

Acknowledgements: Brian Nord (supervisor). 
Chen et al: arXiv:1806.07366. 
Rubanova et al: arXiv:1907.03907. 
Dupont et al: arXiv:1904.01681

__________________________________________________________
Participant in the LSST Corporation’s Summer 2019 Program for Undergraduate Researchers

Summary
Neural ODEs remove discretizations that traditional 
layer based neural networks necessarily have. 
Neural ODEs are a continuous depth model that 
can trade precision and speed. I show that neural 
ODEs can estimate light curve time series using 
LSST Kaggle data.

3. Future Work

Resnets and RNNs transform a hidden state h_t to 
h_t+t using a neural network. This is analogous to 
Euler’s method, in which a continuous 
transformation is discretized. If we take the limit as 
the step size between layers goes to zero, we 
arrive at the derivative of the hidden state wrt time. 

dh(t)/dt = f(h(t), t, network parameters)
Neural ODEs can be solved at any point in time, 
making them prime candidates for time series 
learning.

2. Preliminary Results
Large scale evaluation on the entire Kaggle set has 
not been performed, results mainly using toy data. 
Using a simple n-ODE, MNIST achieves 99% 
accuracy on the test set. 
Left: 10 iterations. Right: 1 epoch (1000 iterations)
Figures: f(x) = log(x) is learned trained on blue data 
points, and extrapolated to red points. 
A neural ODE learns a function fitting a single light 
curves’ flux/time data using time as an input. I think 
training on all light curves with the same network 
would improve the ability for the network to 
extrapolate/predict. 

I would like to try to apply latent ODEs to an 
augmented input space and see if the two 
extensions of the original Neural Ordinary 
Differential Equations complement each other 
and achieve even better results.
Additionally, the Julia language has released a 
package for neural differential equation solving, 
DiffEqFlux.jl, which I would like to use on the 
LSST Kaggle data and see if there are 
differences in accuracy. Since Julia is a compiled 
language, I hope to demonstrate faster training 
time than equivalent neural differential equation 
models in Python. 
Making use of more computation, data, 
augmenting the input space, and latent-odes, I 
hypothesize that winning Kaggle results can be 
achieved with less computation and 
hyperparameter tuning than current challenge 
winners. 

This document was prepared by Deep Skies Collaboration 
(deepskieslab.com) using the resources of the Fermi National 
Accelerator Laboratory (Fermilab), a U.S. Department of 
Energy, Office of Science, HEP User Facility. This manuscript has 
been authored by Fermi Research Alliance, LLC under Contract No. 
DE-AC02-07CH11359 with the U.S. Department of Energy, Office of 
Science, Office of High Energy Physics.

FERMILAB-POSTER-19-106-CD

Neural ODE ResNet

1. Background and Extensions of
Neural ODEs

The time series latent ODEs in the original N-ODE 
paper uses an RNN in the reverse direction to 
encode the initial value. Rubanova et al. improved 
results using an ODE-RNN to compute this initial 
value. Improvements were shown on MuJoCo 
Physics simulations, Physionet, and Human activity 
classification. This improvement is directly 
applicable to LSST object classification.
Dupont et al. shows that neural ODEs preserve the 
topology of the input space, this implies that there 
are functions that cannot be represented with 
n-ODEs. By increasing the ODE solvers input
dimension, mappings that would be difficult
preserving input topology, become much easier.

Neural ODE architecture.
To get an output for 
regression or 
classification, a linear layer 
is used to map the ODE 
output to a value in R^N

http://deepskieslab.com/

