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Summary

Our goal for this summer is to use various neural 
network models to classify gravitational lensing in 
simulated LSST images. We focus on maximizing the 
efficiency and accuracy of our models for training and 
testing using fast inference techniques on FPGA and 
TPU hardware.

Future Work

1. Data

Our data consists of simulated lensing and non-lensing 
images in multiple bands (as expected to be observed 
by LSST) from a Kaggle competition. An example of 
our data is shown below. 

Individual Goal: My next step will be to train my 
model using all of the available images for at least 100 
epochs. Once my model is trained well, I will write 
code to access the FPGA for inference and test the 
overall accuracy and speed of my model.

2. Architecture and Hardware

Architecture: CNNs (Convolutional Neural 
Networks) are deep learning algorithms that can 
efficiently analyze image data. We use a type of CNN 
called ResNet50 (architecture is depicted below) on a 
cloud computing platform called Microsoft Azure. 

Hardware: For inference (testing) our model, we use 
a FPGA (Field Programmable Gate Array). FPGAs 
are able to be programmed by the user and allow for 
extremely fast inference which is ideal for LSST data.

4. Preliminary Results

3. Method

We train our ResNet50 model for 5 epochs, with each 
epoch taking ~1 minute to run on a GPU. We 
preprocess the images by upscaling them from 
101x101 pixels to 224x224 pixels. We then feed the 
images into our model in batches of 20 images and 
classify the image as a lens if the number of pixels of 
the object is above a certain threshold.

We trained our neural network as aforementioned but 
instead of using the whole dataset (2 million images) 
we use a subset of 20,000 images, with 15,000 used 
for training and 5,000 used for testing. The resulting 
accuracy for the training set is ~81% and for the 
testing set is ~74%. How the model performs as a 
function of the training set size is displayed in the 
figure below (where the solid lines are for the training 
data and dashed lines for validation data). 

The leftmost figure is a 
confusion matrix relating 
our predicted labels to the 
actual labels for testing 
(5,000 images). Our model 
performs well at classifying 
the lensed images (labeled 
as “1”, 88%), but struggles 
to classify the non-lensing 
images (labeled as “0”, 
42%). 

By increasing the size of the training/testing datasets, 
running the model for more epochs, and pre-
processing the images by scaling/clipping them, we 
hope to improve the overall accuracy of our model to 
over 90%.

Group Goal: We will test various model/hardware 
combinations (i.e. MobileNet model on a TPU) with 
the intention of performing fast inference at or near 
LSST with our most accurate/efficient combination.
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