FERMILAB-POSTER-19-080-PPD

Using Charge-Coupled Devices to **Characterize Neutron Events**

Dylan Smith – Department of Physics and Astronomy, Michigan State University Erik Ramberg – Fermi National Accelerator Laboratory

Introduction

- Ultra-cold neutrons (UCNs) < 300 neV of kinetic energy
- Useful for studying position-dependent quantum states, as they are only influenced by Earth's gravity

Results

Fig. 3: CCD image with an ⁵⁵Fe source, The slightly-

brighter dots

are the x-ray

events

- Precise measurements involving dark matter, dark energy, and quantum gravity
- Detecting neutrons involves the reaction in a coated CCD of

 $^{10}B + n \rightarrow ^{7}Li + \alpha + free energy$

A simulation software package called The Stopping and Range of lons in Matter (SRIM) uses Monte Carlo methods to track ions in a chosen target

Fig. 1: Diagram of Boroncoated CCD design (left) and picture of CCD set-up (right)

Fig. 4: CCD image with a ²⁵²Cf source.

Methods

- Performed calibrations/measurements on uncoated CCD
- The purpose of this is to ensure its viability and send it to Los Alamos National Laboratory to be coated in ¹⁰B
- CCD is placed in a 10⁻⁴ Torr vacuum chamber at 140 K
- The CCD is connected to a Low Threshold Acquisition (LTA) device, which converts the CCD hits into an image file
- The CCD was characterized by ⁵⁵Fe and ²⁵²Cf sources
- ⁵⁵Fe is used to determine the gain and noise of the CCD
- ²⁵²Cf is used to measure penetrating hits on the CCD
- SRIM is used to determine a correlation between incident ion angle and 2D variances

Discussion/Conclusions

- Values calculated from ⁵⁵Fe:
- Gain = 48.2 ADU/e⁻
- Noise = 11.5 e⁻
- Large amount of hits with ²⁵²Cf source shows that the CCD is working properly
- Still working on finding correlation between variance and angle in SRIM

Acknowledgements

This manuscript has been authored by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy, Office of Science, Office of High Energy Physics.

Fig. 2: SRIM output of α particle hitting a silicon target at 1.7 MeV. 1000 tracks are shown

References

E. Ramberg, J. Estrada, V. Nesvizhevsky, *High Position Resolution Imager for Mapping Gravitational* Quantum States using Ultra Cold Neutrons, DOE HEP National Laboratory Announcement Number: LAB 19-2077

Fermi National Accelerator Laboratory

This manuscript has been authored by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy, Office of Science, Office of High Energy Physics.