Constraining the Neutral Current π^0 Background for MicroBooNE’s Single-Photon Low-Energy Excess Search

Andrew Mogan - University of Tennessee, Knoxville
On Behalf of the MicroBooNE Collaboration

1. NC Δ Radiative Decay

- Possible source of low-energy excess (LEE) events in MiniBooNE
- Dominant source of single-photon events in MicroBooNE
- ~80% of single-photon backgrounds are neutral current (NC) π^0's

2. Analysis Flow

1. Select Signal Topology
 - Take Pandora [3] reconstructed tracks and showers
 - Select events with two shower (2γ) and either one or zero tracks (sp or op)

2. Background Rejection
 - Use tailored Boosted Decision Tree (BDT) trained on background events
 - Result is the world's highest-stats NC π^0 selection on Argon

3. High-Stats NC π^0 Selection
 - Constrain single-photon NC π^0 background
 - See poster by G. Yarbrough

4. Initial Selection

5. BDT Training
 - Train BDT on 10 various kinematic and calorimetric variables in simulation
 - Choose variables with high separation power between signal and background
 - Example: track dE/dx Energy deposition per unit length
 - Isolates events with proton tracks (higher dE/dx) for 2γ0p selection
 - Peak at 2 MeV/cm mostly from minimally-ionizing muon tracks

6. BDT Response

 - Cut on BDT response to maximize efficiency times purity in final selection

7. Final Selection

8. Summary

- Demonstrated world's highest-stats NC π^0 selection on Argon
- Still more data to process!
- Provides excellent background constraint for single-photon LEE search

References