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The importance of sparse data management is growing with
data produced by large-scale experimental and observational
facilities that contain small amounts of non-zero values. In
this document, we explore different design options to sup-
port sparse data in HDF5, one of the most popular high-
performance I/O libraries and file formats used for scientific
data. We discuss several use cases and requirements. Our main
hard design constraint is that any changes to the HDF5 dataset
API would be a burden on users and not acceptable. The
remaining options are discussed below. We provide rationale
for what we believe is the strongest candidate and describe
how its potential benefits can be simulated with the existing
HDF5 library. We have conducted a set of computational
experiments the results of which are reported here. They show
that our candidate meets all relevant requirements and gives
us a certain degree of confidence for an HDF5 library-native
implementation.

Index Terms—Sparse Data Management, HDF5

I. INTRODUCTION

HDF5 is designed to store and manage high-volume and
complex science data, and has become the leading I/O mid-
dleware solution and file format. HDF5 allows storing generic
data objects within files in a self-describing way, and much
of the power of HDF5 stems from the flexibility of the
objects that make up an HDF5 file: datasets for storing multi-
dimensional arrays of homogeneous elements and groups for
organizing related objects. HDF5 attributes are used to store
user-defined metadata on objects in files. Due to the simplicity
of the HDF5 data model and flexibility and efficient I/O of
the HDF5 library, HDF5 supports all types of digitally stored
data, regardless of origin or size. Petabytes of experimental
and observational data (EOD) produced by remote sensing
data collected by satellites, high-energy physics experiments,
and MRI brain scans are stored in HDF5 files, together
with metadata necessary for efficient data sharing, processing,
visualization, and archiving.

Despite the widespread use of HDF5 for storing EOD,
there is no concept of data density or sparsity in the HDF5
data model. Problem-sized data is represented as HDF5
datasets which can be thought of as multidimensional, log-
ically “dense” (as opposed to ragged!), rectilinear arrays of a
certain element type with a corresponding default or fill-value.

The implementation provided in the HDF5 library lets users
control several aspects of how datasets are mapped into HDF5
files, such as layout (e.g., contiguous or chunked), allocation
time (early or late), and storage initialization (fill-value if set,
or never). Given this implementation, there are two obvious
approaches to representing sparse data in HDF5:

1) Use chunked layout and, optionally, compression
2) “Condense” the data and mimic a sparse storage format
The most troublesome side-effect of the first approach is

that it is impossible to efficiently determine which values
of a sparse dataset are defined, i.e., represent “non-zero” or
non-default values1. The loss in I/O performance due to the
overhead introduced by (de-)compression is another potential
downside. On the upside, the first approach maintains the
abstraction or the logical view of the dataset. The second
approach “destroys” that abstraction, which is its most prob-
lematic side-effect. It forces users to adopt an additional
protocol or API whose sole purpose is to “undo the damage”.

While both approaches have a place under the right cir-
cumstances, their side effects limit more general use. In this
paper, we explore the options for and feasibility of sparse data
management in HDF5 without changes to the existing API.
We begin with the description of a model problem (§II). This
is followed by a fairly comprehensive discussion of design
options with their pros and cons (§III). The winning design
is then applied to the model problem and simulated to obtain
estimates of its potential space and run-time savings (§IV).

II. A MODEL PROBLEM

There is no shortage of sparse data use cases in many
scientific disciplines and experiments. In preparing this paper,
we drew on our collective experience with applications from
High Energy Physics (neutrino detection, trajectory data anal-
ysis, accelerator modelling), light sources (neutron and X-ray
scattering experiments), mass spectrometry, and compressive
sensing. The intended readership of this document should also
have no difficulty to add plenty of their own examples.

The following model problem is based on an experimental
physics use case [1]. Assume a stream of large (1–4 MP),

1HDF5 library version 1.10.5 contains an API to determine which chunks
of a dataset are actually allocated, but that’s far from finding defined entries
efficiently.
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two-dimensional data sets (images) arriving at frequency f ,
where the dimensions of the images are constant over time.
Further assume that for each image, it is possible to identify
automatically either (see figure 1):

1) A rectangular Region Of Interest (ROI) which will
typically comprise about 10% of the 2D dataset, or

2) 50-100 small clusters of pixels, irregularly shaped —say
5-10 contiguous points or pixels.

The ROI shape and position, and the number, size, shape, and
location of the small clusters will change over time. For each
image, store only the ROI or the clusters in a 3D dataset (the
third dimension is the “time” index of the 2D dataset in the
stream). However, we must be able to recover both the location
and contents of the ROI or the clusters.

Figure 1: A 2D dataset with an ROI and several small clusters
of non-zero data.

In addition, for some n ≥ 1, store every n-th 2D dataset in
full. (n is constant with typical values between 1 and 10,000).
This could be done either in the 3D dataset mentioned above,
or in a separate 3D dataset.

The overall objective is to drastically reduce the quantity of
data stored by discarding the “uninteresting” parts. By storing
every n–th 2D dataset in full the correctness of the automatic
recognition of ROIs or point lists can be verified.

A. Requirements

1) The HDF5 representation should preserve the (sparse)
subset in (dense) superset abstraction.

2) It should allow access to sparse datasets with the existing
API (albeit with inefficiencies in some cases).

3) The representation should yield commensurate reduc-
tions in storage space and I/O time.

4) Arbitrary (random access) read and write operations
must be supported. If possible, provide optimizations for
patterns such as WORM (write-once-read-many).

5) The representation must allow data-parallel operations.
To satisfy requirement 2 would most likely satisfy re-

quirement 1. It would also have the benefit of being the
least disruptive to the existing HDF5 ecosystem. There is no
question about the value of a good abstraction, but it might

be difficult to measure. Requirement 3 fills that “gap.” Finally,
even the largest sparse dataset may not fit all at once in a fast
layer of the memory hierarchy, and we need to ensure that it
can be “divided and conquered” regardless.

III. DESIGN OPTIONS

The first comprehensive discussion of design options was
given in [1] where two categories of options were identified:
Either an attempt is made to stretch the existing dense design
(weak options) or sparse data are treated as fundamentally
different (strong options).

A. Weak Options

a) Status quo: Make do with what’s in HDF5 today.
Pros: This approach should perform reasonably well with

chunked dataset layout for the ROI part of the use
case. Only overlapping chunks will be allocated and
the 10% area coverage of an ROI means that one
wouldn’t need a huge number of tiny chunks.

Cons: The small cluster/point list part of the use case poses
a serious problem. Since the regions of a chunk
that are populated by cluster elements are no longer
rectangular it is almost impossible to keep track of
defined (“non-zero” in sparse matrix terminology)
entries unless an extremely small chunk size is
chosen, which would inevitably lead to a bloated
chunk index and the overhead of many small I/O
operations.

b) Chunked datatset with fill-value filter: Use a filter to
save space by not storing fill-values.

Pros: This approach fits w/ the current infrastructure and
delivers the space savings on disk.

Cons: There are no space savings in memory. It is also
unclear how to efficiently determine which values
on a chunk are not fill-values. Both deficits could be
addressed by storing selection information alongside
the filtered chunks, but would require substantial
changes to the dataset API (H5D) and the storage
format. There is also the potential for “disruption”
of the filter pipeline such as limitations on interop-
erability with other filters.

c) High-level library: Use the existing primitives to store
the “condensed state” of sparse structures and implement a
high-level API that maps between the (logical) sparse view and
the sparse format encoded as multiple (dense) HDF5 datasets.

Pros: This approach supports the use case and can deliver
the space and time savings required. Staying outside
the core HDF5 library simplifies maintenance.

Cons: While this approach maintains the level of abstrac-
tion for library users, it is abstraction defeating to the
rest of the ecosystem. Substantial changes to existing
tools and applications would be required. It might
work for a class of use cases, but it is unclear how it
could be generalized. Non-WORM data and updates
would be difficult to support, especially in a parallel
setting.



B. Strong Options
a) B-trees: Store defined or non-fill-value entries in B-

trees indexed by their (logical) position.
Pros: The use of B-trees in the HDF5 library is pervasive,

and the re-use of existing machinery would be an
advantage. This approach would deliver the space
and time savings for small clusters.

Cons: The overhead for “not-so-sparse” data would be
considerable. There are also better options (trees)
available. Finally, a parallel implementation of the
tree manipulations and metadata management would
be rather challenging.

b) Sparse chunks: Combine chunks and selections. A
sparse chunk is a chunk “decorated” with a selection that
marks the positions of non-fill values.

Pros: We re-use existing selection machinery. It delivers
space savings on disk and in memory, as well as
time savings. Most importantly, it is abstraction
preserving.

Cons: The potential semi-sparse data overhead needs to be
estimated. The optimization of complex selections is
a familiar challenge.

c) Start from scratch:
Pros: Everything’s perfect here.
Cons: (None.) High risk, uncertain outcome and cost.

C. Discussion
Let’s identify the strongest contender in each category!

Among the weak options, if we reject the status quo, only two
options are left. The fill-value filter approach cannot reduce
the in-memory footprint of sparse datasets, and the efficient
determination of defined entries requires additional metadata
structures. The main downside of the high-level library is its
abstraction defeating nature and the knock-on effect on the
ecosystem. However, it is clearly the approach one would
pursue with today’s HDF5 for a specific use case.

Among the strong options, it’s safe to reject the from-
scratch option. The main issues of the B-tree approach are
the challenging parallelization and user complexity (B-tree
parameters). The sparse chunks approach, by comparison,
is based on well-established user-level constructs (chunks,
selections) and offers chunk-level parallelism at the minimum.

There is a certain correspondence between the high-level
library approach (HLL) and sparse chunks (SC). By similar
means, HLL might achieve outside the HDF5 core library what
SC can achieve inside the library. SC’s main advantages are:
1) It is abstraction preserving. 2) Being inside the library, it is
application-neutral. 3) Optimization is possible w/o disturbing
the ecosystem.

How about backing up this analysis with a few empirical
results? The “duality” between HLL and SC permits us to do
exactly that. In the next section, we describe an experiment
whose goal is to make it plausible that the space and time
savings goals are indeed achievable (for our model problem).

For a study of the HDF5 library changes necessary to
implement sparse chunks we refer the reader to [2].

IV. EXPERIMENTAL EVALUATION

The conclusion of the options discussion in section III-C
was that we can simulate the potential benefits of the sparse
chunks design by implementing a high-level library-like I/O
kernel for our model problem. In this section, we describe
such an implementation and report the results obtained.

A. Four I/O Kernels

We implemented four I/O kernels for our model problem.
Baseline: Write a single 3D dataset of full 2D frames, and
read it back.
ROI: At a constant rate, write a reduced number of full 2D
frames (key frames). In all other, non-key frame time steps
write an ROI covering 10% of the full frame area where the
coordinate range covered by the ROI is represented as an
encoded HDF5 hyperslab selection. Subsequently, read back
the key frames and the ROIs (in chronological order).
SC (Small Clusters): At a constant rate, write a reduced
number of full 2D frames (key frames). In all other, non-
key frame time steps write a random number (between 50 and
100) of small hyperslabs containing at least 5 to 10 contiguous
pixels which are represented as encoded HDF5 hyperslab
selections. Subsequently, read back (in chronological order)
the key frames, and the small clusters.
Subsets (SS = ROI|Small Clusters): Write a reduced number
of full 2D frames (key frames). In all other, non-key frame
time steps, flip a coin and either write an ROI covering 10% of
the full frame area or write a random number (between 50 and
100) of small hyperslabs containing at least 5 to 10 contiguous
pixels. Both are represented as an encoded HDF5 hyperslab
selections. Subsequently, read back (in chronological order)
the key frames, and the subsets (ROIs or the small clusters).

Without loss of generality, we can represent the small
clusters of pixels as unions of (small) rectangles. According to
the LCLS-II specification, an ROI covers about 10% of pixels.
By contrast, the small clusters in a non-key frame time step
cover only about 0.1% of pixels. It could be argued that by
making the chunks smaller, the case of small clusters (SC) is a
mere re-scaled version of ROI. However, the two cases exhibit
very different ratios in the amounts of metadata (bookkeeping)
to data (pixel colors). The ratio is close to zero for a rectilinear
region that covers about 10% of pixels, but it’ll be significant
for 50-100 small clusters whose pixel coverage is a mere 0.1%
of pixels. This is illustrated by the third kernel (SC). The fourth
kernel (SS) doesn’t follow the LCLS-II use case verbatim, but
is a “blend” of 50% ROI and 50% of SC. It offers a glimpse
of the impact of the metadata to data ratio on performance.

The kernels can be parameterized as follows with the values
used in the experiment shown in parentheses:

B - the size of a pixel (color depth) [bytes] (1, 2, 4)
N - the logical number of frames (128)
W - the width of a frame [pixels] (1024)
H - the height of a frame [pixels] (1024)
S - the stride between full-frame writes (16)
For each kernel we record the following metrics:



• The size of the output HDF5 file in bytes.
• The amount of application metadata read/written.
• The amount of application data read/written.
• The total application metadata read/write time.
• The total application data read/write time.
By application data we mean pixel colors of depth B. The

ROI and small cluster encodings as well as other book-keeping
datasets are considered application metadata. By comparing
the sizes and timings against the baseline (full frames!), we
obtain an estimate for the potential space/time efficiency of
the sparse chunks design.

B. Implementation

The I/O kernels were implemented in C++ 17 with help
from two third-party libraries. We used Armadillo – a C++
library [3] for linear algebra for & scientific computing – to
represent 2D frames and vectors in memory. We also used
H5CPP [4] – a header-only C++ template library for HDF5 –
with its convenient and efficient packet table implementation.

Although a contiguously stored 3D dataset of full images
is not realistic for the use case at hand (since the number
of full frames to be written is unknown), it makes for a
good baseline with its performance close to standard POSIX
I/O. On the other hand, HDF5 1.8.11 and 1.10.2 saw the
introduction of direct chunk write (H5Dwrite_chunk) and
read (H5Dread_chunk) functions, respectively, to bypass
the default I/O path for chunks. We confirmed that the
performance of direct chunk I/O against an arbitrarily ex-
tendible dataset is equivalent to the read and write performance
against contiguous layout. By comparison, the performance of
H5Dwrite along the default chunked I/O path was poor while
the performance of H5Dread was acceptable. Consequently,
we used direct chunk I/O in the implementation of all kernels.
Unlike for full frames, the by comparison much smaller
I/O requests and size variability required the introduction of
buffering (for writes) and prefetching (for reads). This can be
seen as mimicking the function of a cache manager in a real
sparse chunks implementation.

C. Results

The following results were obtained on cori at NERSC
and jelly at The HDF Group. We used GCC/G++ 7.3.0
(-std=c++1z) and HDF5 1.10.4 with the latest file format.
The frames were of a width and height of 1024 pixels. The
logical number of frames was 128 with a stride of 16, and
each kernel was run 10 times.

Each cori node has two sockets and each socket is
populated with a 16-core Intel Xeon Processor E5-2698 v3
(”Haswell”) at 2.3 GHz. Each node has 128 GB DDR4 2133
MHz memory (four 16 GB DIMMs per socket). Each core has
its own L1 and L2 caches, with 64 KB (32 KB instruction
cache, 32 KB data) and 256 KB, respectively; there is also
a 40-MB shared L3 cache per socket. The test were run
against the scratch Lustre file system on a Cray Sonexion
2000 Lustre appliance with a maximum aggregate bandwidth
> 700 GB/sec. (The use of the Burst Buffer on cori was

not considered for this experiment. We would expect better
performance than on Lustre. However, the use of a local file
system on jelly should give us fairly accurate picture of
what, if any, qualitative differences to expect.)
jelly has two sockets and each socket is populated with

a 14-core Intel Xeon Processor E5-2695 v3 at 2.3 GHz. It
has 125 GB DDR4 memory. Each core has its own L1 cache
and L2 caches, with 32 KB and 256 KB, respectively; there is
also a 35-MB shared L3 cache per socket. The tests were
run against an XFS file system over a RAID 10 volume
which consisted of 4x Seagate ST6000NM0034 (6TB) drives
managed by a LSI Logic / Symbios Logic MegaRAID SAS-3
3108 [Invader] controller.

We report the space “compression” and time “speedup”
factors of the ROI, SC, and SS I/O kernels relative to the
baseline of reading/writing full frames from/to a contiguous
3D dataset. Given the baseline time T b and I/O kernel timings
tkD, t

k
MD for kernel k and (meta-) data (D, MD), the time

speedup factor was calculated as T b/(tkD + tkMD). Similarly,
given the baseline file size Sb and the kernel k’s output file size
of sk, the space compression factor was calculated as Sb/sk.
A factor of one means that the kernel didn’t save (“compress”)
time or space over the baseline. A factor less than one means
a slowdown or bloat over the baseline (or both).

The I/O kernel names are ‘ROI’, ’SC’, and ‘SS’ (subsets =
ROI|SC). The number after a kernel name indicates the pixel
size in bytes (1, 2, 4). For example, ‘ROI2’ indicates an ROI
kernel run with a 2 byte pixel size (16-bit “color depth”).

All results shown below are relative to the baseline of writ-
ing to/reading from a three-dimensional contiguous dataset of
full frames. For reference, the absolute performance numbers
for jelly and cori are shown in table II.

TABLE I: Size of the baseline HDF5 file.

Color Depth [byte] File Size [byte]
1 134,219,776
2 268,437,504
4 536,872,960

TABLE II: Baseline performance cori (1) and jelly (2).

Mode Color Depth [byte] Time 1 [us] Time 2 [us]
WRITE 1 232,057 58,134
READ 1 28,150 40,849

WRITE 2 456,126 134,617
READ 2 59,658 77,796

WRITE 4 741,495 269,834
READ 4 108,527 134,485

Because of space constraints, only a selection of figures is
shown below. Overall, the results for both systems exhibited
the same qualitative behavior.

D. Discussion

The results seem to be consistent with respect to their
baselines across platforms.

For ROI (see figure 2), the time speedup factor for writes
and reads appears to be between 6 and 10. Similarly, the space



Figure 2: Space and time ”compression” for ROI. (cori)

compression factor for ROI appears to be around 6.6, and the
metadata to data ratio is close to zero (< 0.001).

In figure 3, the effect of varying the coverage ratio in 10%
increments of an ROI is shown. As expected, read, write, and
space factors decline with increased ROI coverage. Higher
color depth has a “calming” effect: In the corresponding figure
for 4 byte colors (not shown here!) the factors are greater and
the decline to 1 is more gradual.

For SC (see figure 4), because of the unfavorable metadata
to data ratio, color depth is a significant factor. (The ratio is
greater than 2 for 1 byte color depth and even for 4 byte color
depth the ratio is still close to 1.) The variability in the factors
is in the 5 to 10 range, at a level comparable to ROI.

For SS (see figure 5), the time factor decreases to between 4
and 6 and the space compression decreases to about the same
range. The metadata to data ratio jumps to between 0.2 and
close to 1. The “calming” effect of the color depth can be seen
clearly in this case, as greater color depth creates larger data
writes and reads while the metadata reads and write remain
unchanged.

Overall, color depth appears to be much less of a factor
in the ROI case than for SC and SS, which is plausible.
While these numbers don’t prove anything they suggest that

Figure 3: Space and time ”compression” for ROI, 8-bit color,
and 10% coverage increments. (jelly)

requirement 3 (see section II-A), which asks for commensurate
reductions in space and time, is achievable in this and similar
use cases.

V. RELATED WORK

The sparse chunks design resembles in some aspects the
data tiles used in TileDB [5]. In HDF5, when creating a dataset
with chunked layout a chunk size must be specified. Similarly,
in TileDB, when creating a sparse array, a user can specify
the data tile capacity. The idea of using HDF5 selections to
track defined entries on a chunk mirrors TileDB’s coordinate
materialization approach for sparse arrays. The two approaches
begin to deviate when it comes to which operations they
support efficiently. As demonstrated in [5], TileDB’s avoidance
of in-place updates offers superior random write performance
and handling of variable-length data. While a similar effect
can be achieved in HDF5, for example, through the use of
a so-called “onion” VFD, historically, this type of operation
has not been a prominent use case. These use cases might
become more important if HDF5 were to support sparse data
through sparse chunks or another mechanism. It also increase
the demand for concurrent, atomic read/write access to HDF5



Figure 4: Space and time ”compression” for SC. (cori)

datasets, which is another area where TileDB’s approach of
fragments (timestamped snapshots) pays off.

VI. CONCLUSIONS

Inspired by a “groundswell” of use cases, in this paper, we
have explored design options for the support of sparse data in
HDF5 subject to the requirements described in section II-A
and without changes to the existing API. We have provided
the rationale for and chosen the option in our judgment most
sensible candidate. We then evaluated this approach using a
model problem and an HDF5 library-external prototype. Our
findings show that it meets the requirements for the particular
setup and we see this as a confirmation of the suitability of
our design choice.

VII. FUTURE WORK

There is no other “proof” of our design than “to build the
real thing”. A preliminary study [2] shows that the complexity
of the first version of an HDF5 sparse chunks implementation
is comparable to other HDF5 features. Our near term goal is
to get this analysis into the hands of the HDF community and
recruit supporters and early adopters. A revised request for
comments (RFC) document will be published this fall (2019)
and implementation planning could begin as early as Q4 2019.

Figure 5: Space and time ”compression” for SS. (cori)
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