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Abstract. The high-luminosity program has seen numerous extrapolations 
of its needed computing resources that each indicate the need for 
substantial changes if the desired HL-LHC physics program is to be 
supported within the current level of computing resource budgets. Drivers 
include large increases in event complexity (leading to increased 
processing time and analysis data size) and trigger rates needed (5-10 fold 
increases) for the HL-LHC program. The CMS experiment has recently 
undertaken an effort to merge the ideas behind short-term and long-term 
resource models in order to make easier and more reliable extrapolations to 
future needs. Near term computing resource estimation requirements 
depend on numerous parameters: LHC uptime and beam intensities; 
detector and online trigger performance; software performance; analysis 
data requirements; data access, management, and retention policies; site 
characteristics; and network performance. Longer term modeling is 
affected by the same characteristics, but with much larger uncertainties that 
must be considered to understand the most interesting handles for 
increasing the "physics per computing dollar" of the HL-LHC. In this 
presentation, we discuss the current status of long term modeling of the 
CMS computing resource needs for HL-LHC with emphasis on techniques 
for extrapolations, uncertainty quantification, and model results. We 
illustrate potential ways that high-luminosity CMS could accomplish its 
desired physics program within today's computing budgets.  

1 Introduction 
Given the scale, and thus cost of, the LHC computing requirements [1], modeling 

efforts aimed at projecting experiment resource needs started even before data taking in 
Run 1 of the LHC [2]. The goal of these models is to capture sufficient detail of the 
experiment’s physics requirements, LHC performance expectations and experiment’s tiered 
computing model to accurately project the level of CPU, disk and tape resources needed 
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from each computing tier supporting the experiment. Results from these models provide 
input to external reviews, including both short-term estimates of needs and long-term 
projections for the high-luminosity LHC (HL-LHC) program. In particular, the resource 
requests are made by LHC experiments and reviewed at six month intervals. To match 
budget cycles, these reviews assess the computing needs two years ahead. For example, in 
spring of 2018, these reviews assess requests for 2020.  

Internally, modeling tools understand the implications of evolutions to computing 
models. In particular, good models will help to identify critical components that drive 
resource needs, and demonstrate impact of physics choices and R&D activities. 

2 Model evolution 
Initially simple models have now become complex to meet growing demands for accuracy, 
fidelity and timescales. Figure 1 illustrates the current approach by the CMS experiment [3] 
for both short-term and long-term projections. 

 
Figure 1: High-level view of how the CMS resource models build up total resource needs 
from the underlying inputs. 
 

Examples of parameters needed as input include: 
1. What workflows will be run by the experiment, where they will run, and when 

they will run. These details can help define the overall resource need, and also 
periods of peak resource need that might need to be considered as resource 
planning is done. 

2. Evolution of experiment workflows, data tiers, analysis requirements, and other 
attributes of how the experiment anticipates running its infrastructure. Research 
and development is always on-going. Once deployed, results of this R&D impact 
may have a big impact on the computing resource needs of an experiment. For 
example, a small data tier becoming more widely used for analysis will reduce the 
overall disk need. 

3. Evolution with instantaneous luminosity, in particular the average number of 
pileup events expected. Time to process each event is quite sensitive to the event 
complexity, most often characterized by the average pileup. The processing time 
for both data and Monte Carlo simulation samples should be modeled accordingly. 

4. Evolution with integrated luminosity, in particular the total luminosity impacts the 
amount of Monte Carlo simulation required by analysts. Annual luminosity 
estimates are available from the LHC through the first years of HL-LHC [4]. 

5. Impact of LHC reliability, in particular the number of data taking seconds per year 
impacts the total event sample collected. While trigger output rates are typically a 
function of luminosity, they also have a component that is more constant. For 
example, CMS [5] and ATLAS [6] quote average rates of 1 kHz during Run 2 as 
input to modeling results. 

6. Expected analysis user behaviour, such as peaks of activity for conferences and the 
overall level of analysis processing expected. Analysis processing is an important, 
but difficult to model, aspect of computing resource needs. The use of monitoring 
information is important for deciding how to include (e.g., which parameters) 
analysis into a model. In CMS we consider how many times, on average, events 
are read during a month, as well as how the data set used by most analysts will 
evolve with time. For example, each change of center-of-mass energy in data 
taking effectively resets the analysis data set of most interest (once data from that 
new energy is completely reconstructed and calibrated).  

7. Evolving balance of commissioning needs, production needs and analysis needs. 
Planning of computing resources often neglects special needs such as those for 
detector commissioning or for preparing for new processing activities. These 
needs can be large in the case that samples of raw detector data or other large data 
sets are needed (which would otherwise be on tape). 

8. Impact of site infrastructure needs. Like the experiment software stack, site 
infrastructure continues to evolve. Models need to be capable of including new 
attributes as they become relevant for planning purposes. Topical examples 
include network requirements, tape recall rates, or on the long term the availability 
of accelerators. 

9. Use of dynamic and heterogeneous resources, such as when the high-level trigger 
farm is likely to be available for offline workflows. Dynamic resources can reduce 
the overall need, in particular for CPU, as they can be used in periods of peak 
need, or alternatively to complete processing tasks more quickly than they 
otherwise would be. The challenge is to determine the extent to which these 
resources can be included in the computing resource need planning process. Often 
their availability is highly uncertain when projections are made. For example, this 
can be due to the process of making allocation requests. Conversely, the 
availability of a high-level trigger farm for processing is more predictable, as it is 
essentially correlated with data taking periods. 

10. Policies that ensure efficient resource usage, such as data management policies. As 
the pressure on resources increases, more and more complex systems for the agile 
management of storage resources are important. It is difficult to build first-
principles models of how policies will impact resource usage. Conversely policies 
can have a large effect on resource requirements, so they must be included in any 
model. 

3 New computing resource model for CMS 
As CMS started to look towards estimates of Run 3 and HL-LHC computing resource 
needs, we decided that a new implementation of the model itself is needed in order to 
naturally increase the fidelity of the model to match the evolutions towards these runs. 
CMS has chosen a programmatic solution rather than a spreadsheet driven solution for 
modeling needs going forward. In our view, advantages of this approach include: 

1. Ease of extendibility: New computing resources, processing activities and data 
attributes can be easily added to the model. 
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2. Clarity of input parameters: Various human readable formats can be easily used 
to describe and document each input parameter. 

3. Not monolithic: Programmatic approaches are easier to design for enabling a 
wide variety of model analysis, such as parameter trade-off studies. 

4. Version control and change tracking: Code for the model itself, as well as input 
data evolution and model results can easily be tracked and shared 

5. Unit testing: Model components can be more easily tested to ensure robustness 
as the model evolves and becomes more complex. 

Figure 2 illustrates the basic building blocks of our implementation.  
 

 
Figure 2: Resource estimate model building blocks 
 

In short the primary concepts of the model include: 
1. Input: Specifications of each model component are user driven. The current 

implementation supports a JSON interface and a Python interface for defining 
model components. These may be mixed and matched. The primary reason for 
a Python interface is to make it easy to define repetitive model components 
without excessive duplication. For example, a processing activity performed 
each year is most easily defined in a loop.  

2. Activities: Activities are the model component that defines a unit of work to be 
done by the experiment’s computing system. For example, “prompt 
reconstruction in 2018” is an Activity. Activities are defined by start and end 
times, data taking periods that they should include (e.g., 2018), a model for the 
number of events to be produced or processed, the number of times each event 
should be produced or processed (e.g., for analysis user activity) and a list of 
“ActivityTypes” included. 

3. ActivityTypes: ActivityTypes are the model component representing a specific 
workflow, for example digitization or event reconstruction. These most 
naturally correspond to a single application run by the experiment. 
ActivityTypes are defined by the list of Attributes that are required, and the 
fraction of events that are expected to have each Attribute. For example, the 
prompt reconstruction activity might have an attribute for CPU required as 
well as each type of output data, each of which ends up on different disk or 
tape systems.  

4. Attributes: Attributes define the properties of ActivityTypes, and are defined by 
a resource type (e.g., Tier-1 disk) and resource purpose (e.g., storage of the 
AOD data tier). Attributes define the model for how much of a resource is 
needed (per event) as a function of relevant parameters. An example is that the 
AOD data tier size per event typically depends on pileup (the number of 
simultaneous proton-proton interactions in a LHC bunch crossing seen by 
CMS). In this case, the Attribute could be defined as a lookup table that is a 
function of the average pileup in a data taking period, or as a polynomial 
function. 

5. ResourceTypes: Each relevant computing infrastructure component to be 
monitored corresponds to a ResourceType. For example, Tier-1 disk or Tier-0 
CPU are ResourceTypes for the CMS model. ResoureTypes include parameters 
inherent to the computing resource, such as a nominal efficiently metric. For 
example, this may represent the nominal CPU efficiency, or maximum 
percentage filled for disk. 

6. ResourcePurposes: Each relevant consumer of any ResourceType is denoted as 
a ResourcePurpose. Examples include the CPU needed for reconstruction, the 
storage needed for RAW data.  

7. Resources: Resources define the amount of each computing infrastructure 
component needed for each purpose. Resources include a ResourceType, a 
ResourcePurpose, and an amount (e.g., HS06/event).  

8. Policies: The model does not yet include a generic class for capturing resource 
management policies. The model does include an implementation for a data 
management policy. The number of replicas of each ResourcePurpose on each 
ResourceType evolves according to a time-dependent model. The model may 
be different depending on if the data corresponds to the last ResourcePurpose 
that was processed for a given data taking era. This last feature is meant to 
capture reprocessings, when the last reprocessing is of more interest than the 
previous ones. 

9. Visualization tools: The model includes both plotting and tabular visualization 
tools. Both types of tools bin data according to the time period (e.g., annually 
or monthly), and grouped or split by ResourcePurpose or ResourceType. The 
plots to be included are user defined. The plotting toolkit is backed by the 
matplotlib [7] package. 

 
Example results are shown in Figure 3, where the estimated evolution in CMS CPU and 
disk requirements are shown. 

 

 
Figure 3: Current estimates for CMS CPU and disk needs through the initial years of the HL-LHC 
program. 
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4 Model trade-off studies 
An important attribute of any model is the ability to not only produce coherent and 
consistent results, but to facilitate parameter sensitivity studies. Being able to identify the 
most critical parameters is especially important as HEP looks to identify the most important 
areas for research and development in software and computing for HL-LHC.  

An example of this sort of analysis is illustrated in Figures 4 and 5, where we show 
code and corresponding visualization for how the cost metric might depend on the time 
needed for reconstructing each event in the HL-LHC era. Estimating cost is itself a 
potentially complex undertaking. We built a simplistic model based on current equipment 
costs, its evolution and lifetime at U.S. Tier-2s in CMS to provide enough fidelity for 
relative cost comparisons (absolute comparisons being more complex). From this model, 
we defined a “cost metric” as the corresponding cost of the start-up phase of HL-LHC 
where the computing costs are expected to be highest. 

Given this cost metric, we can simply change the reconstruction time in the model, 
rerun and tabulate the cost as a function of reconstruction time, as shown in Figure 5. 
 

 
Figure 4: Pseudo-code example of how the event reconstruction time can be varied to perform a 
tradeoff study. 

 

 
Figure 5: Example results illustrating the fractional cost savings as a function of the fractional 
reduction in CPU time needed to reconstruct each event offline. 
 
 
 
 

5 Conclusion 
We have presented an initial look at a new approach to implementing a computing resource 
model capable of making Run 2, Run 3 as well as HL-LHC resource projections. While 
developed in the context of CMS, the design and implementation have focused on user-
input driven design which should enable others to use this software once released. We 
expect to release an initial version by the end of 2018 or early 2019. 
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