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Abstract. The Physics programmes of LHC Run III and HL-LHC challenge the
HEP community. The volume of data to be handled is unprecedented at every
step of the data processing chain: analysis is no exception. Physicists must be
provided with first-class analysis tools which are easy to use, exploit bleeding
edge hardware technologies and allow to seamlessly express parallelism. This
document discusses the declarative analysis engine of ROOT, RDataFrame, and
gives details about how it allows to profitably exploit commodity hardware as
well as high-end servers and manycore accelerators thanks to the synergy with
the existing parallelised ROOT components. Real-life analyses of LHC experi-
ments’ data expressed in terms of RDataFrame are presented, highlighting the
programming model provided to express them in a concise and powerful way.
The recent developments which make RDataFrame a lightweight data process-
ing framework are described, such as callbacks and I/O capabilities. Finally,
the flexibility of RDataFrame and its ability to read data formats other than
ROOT’s are characterised, as an example it is discussed how RDataFrame can
directly read and analyse LHCb’s raw data format MDF.

1 Introduction

The ROOT project is committed to take physicists from data acquisition to publication as
effectively as possible. The need to offer analysts simpler and yet powerful interfaces that
could easily let them exploit the full potential of their hardware became all the more ap-
parent with the increased luminosity and the upgrades of the LHC experiments foreseen for
Run III [1], HL-LHC [2] and FCC [3] – with the consequent increase in the amount and
complexity of available data. ROOT::RDataFrame 1, has been developed in order to ad-
dress these requirements. In a similar vein to other modern data analysis frameworks such as
Apache Spark’s DataFrames [5] and Python’s data analysis library pandas [6], RDataFrame
exposes a declarative API designed to be easy to use correctly and hard to use incorrectly.
Novel elements introduced by RDataFrame are the choice of programming language (C++),
which allows usage of template metaprogramming to avoid runtime overhead while main-
taining generality of interfaces, the integration of just-in-time compilation of user-defined
expressions to make analysis definition concise when top performance is not required, and of
course a tight integration with the rest of the ROOT data analysis toolkit. User-transparent
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1in the following just RDataFrame, first introduced in [4] as ROOT::Experimental::TDataFrame
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task-based parallelism has been a goal since inception, and recent R&D [7] demonstrates that
the programming model lends itself to multi-node distributed execution with no changes.
Firstly, this paper will offer a high-level overview of RDataFrame’s software design (section
2). Section 3 will follow with a review of the most important, recently introduced features
that contribute to make RDataFrame a fully fledged lightweight data processing framework.
Finally, one real-world application of the framework and performance benchmarks are dis-
cussed in sections 4 and 5 respectively.

2 RDataFrame’s software design

Figure 1. The RDataFrame framework reads from a columnar data format via a data source, applies
transformations to the data (i.e. selects rows and/or defines new columns) and produces results (i.e.
data reductions like histograms, new ROOT files, or any other user-defined object or side effect). Data
sources for ATLAS’ xAOD data format and LHCb’s MDF binary data format exist but are not dis-
tributed with ROOT.

Figure 2. A simple C++ RDataFrame analysis that performs event selection, defines a new quantity,
produces a histogram and writes processed data to disk. All registered operations will be executed in a
single event loop.

Design principles

At a high level, RDataFrame strives to expose modern, elegant and safe interfaces. The
introduction of elements of declarative programming in the design (users say what they
need to compute, RDataFrame chooses how to compute it) provides user-visible advantages
such as less typing, increased readability and abstraction of complex operations. At the same
time, by decoupling API from underlying implementation, the declarative paradigm allows
for transparent optimisations (e.g. user-transparent parallel processing of range of events, lazy
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evaluation, caching) that it would not have been possible to introduce in previous ROOT data
analysis facilities such as TTree.
As shown in figure 2, the design also features elements of functional programming such
as pure and higher order functions which encourage users to program in terms of small and
reusable components with less side effects and less shared state; this in turn increases thread
safety and code correctness: pure functions are thread safe by construction and are easier to
test as they do not carry dependencies on global state. Furthermore, thanks to PyROOT’s [8]
automatic python binding generation, most of the framework’s functionality is seamlessly
available in Python, guaranteeing a consistent user experience.

Functional parts

Concretely, the framework is composed of three kinds of objects:

• data sources read columnar data and expose a common format-independent interface. This
is a customisation point: expert users can implement a data source for their columnar data
format of choice. Data sources are discussed in more detail in section 3.

• nodes are objects that represent one step of the data analysis workflow specified by the
user. They form a computation graph which represents the full analysis workflow. With
reference to figure 2, each Filter, Define or Histo1D invocation creates a node ob-
ject which is appended to the node on which the method was called, hence forming a graph.

• results: most RDataFrame methods return a smart pointer (an RResultPtr, see [9]) to an
object produced through data processing. For example, Histo1D returns a smart pointer
to a histogram (TH1D) object. These smart pointers are the mechanism through which lazy
execution is implemented: the actual data processing is only triggered upon access to one
of the results produced by an RDataFrame (i.e. dereferencing of the smart pointer). During
the data processing all previously booked results are produced simultaneously.

We distinguish between RDataFrame methods which return new RDataFrame-like ob-
jects (such as Filter or Define) and methods which return results. We refer to the former
as transformations and to the latter as actions, following Spark’s nomenclature.

Parallelisation scheme

The actual event loop is parallelised by processing different chunks of data in different tasks.
Tasks are scheduled for execution on a thread pool, and the execution of each task updates a
thread-local copy of each desired result with the output of the processing of the relevant data
chunk. As an optional final step, thread-local partial results are merged into a single result
object that will be handed to users. ROOT’s task scheduler is currently Intel’s Threading
Building Blocks (TBB) library (see [10]).
Assuming the task scheduler employs a pool of worker threads of appropriate size (as it hap-
pens with TBB), task-based parallelism offers several advantages: there is no risk of over-
committing computing resources, as the task scheduler ensures that each thread runs one task
at a time, also taking into account dependencies between tasks; this scheme also integrates
well with other entities (e.g. experiments’ frameworks) which schedule their own tasks, as
long as all tasks are submitted to a common scheduler. Finally, redundant decompression
of ROOT data is avoided by chunking inputs with the same granularity at which they were
compressed.
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3 Recently introduced features

3.1 Data sources

Figure 3. RDataFrame can read any columnar data format through a dedicated data source implemen-
tation. Expert users can implement and seamlessly integrate data sources for their format of choice.

Although the ROOT data format certainly plays a large role in HEP analyses, it is however
not the only format of interest in science: a common user requirement is to read text files, in
CSV format or similar, into ROOT; the ALICE experiment also expressed [11] interest in the
possibility to use RDataFrame’s declarative analysis paradigm to process Apache Arrow in-
memory tables, as part of their data analysis framework renovation effort. In order to address
these use cases, the framework provides the interface type RDataSource (see [12]) which
defines a minimal API that RDataFrame can use to read arbitrary tabular data formats.

In practice, RDataSource is a C++ abstract base class which imposes certain func-
tional requirements onto its implementations; concrete derived types will provide adaptors
that RDataFrame can leverage to read any kind of tabular data formats. RDataFrame calls
into RDataSources to retrieve information about the data, to obtain (thread-local) readers or
“cursors” for selected columns and to advance such readers to the desired data entry.

RDataSource not only extends RDataFrame to support other formats than ROOT, but it
decouples the analysis code from the format analysed so that users can use the same exact
code to process potentially very different datasets.

CSV and Apache Arrow inputs are currently supported through this mechanism and pro-
totypes for LHCb’s MDF binary data format and ATLAS’ xAOD event data model (see [13])
have been developed, which goes to show the flexibility of the approach.

3.2 User-defined callbacks

It is possible to schedule execution of arbitrary functions (callbacks) during the event loop.
Callbacks can be used, for example, to inspect the ongoing filling of a histogram as the
event loop is running, to save results to a file every time a certain number of new entries are
processed, or to display a progress bar that indicates event loop progress.
As an example, figure 4 shows how one can draw an up-to-date version of a result histogram
every 100 entries.

At user’s discretion, callbacks can be called once at the beginning of the event loop or
every time a certain amount of new entries have been processed. Users can also decide
whether the callback should be called only by one thread at a time (which thread calls the
callback might vary during execution, but the framework guarantees that the given amount
of entries will have been processed between calls) or by all threads, potentially concurrently,
in which case the user is responsible for providing a thread safe callback function (more
information is available at [14]).
This feature is currently only available in C++, not Python.

4 A real-world RDataFrame application

As a case study, we would like to discuss a real-world RDataFrame C++ application devel-
oped by ROOT users from the ATLAS collaboration [15]. Refer to figure 5 for the applica-
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Figure 4. An example callback usage, commented line by line. The drawHisto function is called
by one of the worker threads every one hundred entries processed, and it refreshes a canvas on which
the state of the histogram is displayed. The callback need not be thread-safe, as it is never executed
concurrently. In multi-thread executions, the partial result that the callback will receive as argument
will be the thread-local copy that the relevant worker thread is employing.

Figure 5. A representation of the computation graph of an RDataFrame C++ application that performs
ntuple to ntuple processing of simulated data. For each of sixty different systematics, the input ntuple
is skimmed and several columns containing quantities relevant for further processing and dependent on
systematics are added. Sixty new output ROOT files are produced within the same event loop.

tion’s computation graph and a brief explanation of its purpose. It is worth highlighting a few
striking features of the application’s codebase: first of all, thanks to the declarative program-
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ming model, the program’s main function is a simple sequence of Filter and Define calls,
followed by a call to schedule a write-out of the processed ntuple (RDataFrame’s Snapshot
method); the definition of the analysis workflow is clearly separated from the definition of
the smaller helper functions. Given a little familiarity with RDataFrame’s API, the workflow
is grasped quickly, with no need to dive into finer details if not required: such details are en-
capsulated in several small, pure helper functions. Of course good software design practice
is to always make applications as readable and modular as possible; however, RDataFrame’s
programming model makes it natural and encourages users to write code with such qualities.

Finally, it is worth noting that event selection, calculation of new quantities and writing
of the sixty output ROOT datasets all happen within a single parallelised event loop, an
achievement that would have required significant effort and attention to low-level details with
ROOT interfaces preceding RDataFrame.

5 Scaling and performance benchmarks

Figure 6. Scaling of a Monte Carlo QCD Low-PT event generation and analysis on the fly for an ad-
hoc implementation using a patched ROOT 5 and POSIX threads (labeled “original” in the plot) and an
RDataFrame rewrite of that same application (yielding identical results). No disk reads or writes are
performed by either application. KNL architecture, 64 physical cores.

In order to measure the scaling of a realistic RDataFrame application, we take a pre-
existing parallel code that generates low-pt QCD events, processes them and plots some
quantities of interest as ROOT histograms. This application has been developed for research
purposes by an expert ROOT user, who based it on a fork of ROOT version 5 patched to
allow multi-thread data analysis. Data is produced and analysed on the fly: absence of direct
disk I/O makes it possible to scale to a large number of cores without being limited by the
hardware’s reading speed. We compare the original code with an RDataFrame-based rewrit-
ing which produces identical results and reuses most of the numerical computation logic. As
figure 6 shows, RDataFrame introduces a small overhead with respect to the original ad-hoc
code, which made direct use of lower-level ROOT interfaces. On the other hand, RDataFrame
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Figure 7. Read speed (events/s) on an LHCbOpenData dataset for three different reading APIs available
in ROOT: TTree+SetBranchAddress, TTreeReader, RDataFrame (with and without implicit multi-
threading enabled). The benchmark was run on a machine with four physical cores, 3.6 GHz each,
and an off-the-shelf SSD. TTreeReader adds a non-negligible overhead on top of direct TTree usage,
whose origin is understood. This overhead will be reduced in future ROOT releases. RDataFrame
employs TTreeReader internally, inheriting the overhead as a consequence.

scales to a larger amount of cores thanks to task-based parallelism and less lock contention
during the event loop.

In order to assess RDataFrame’s I/O performance, the measurements of [16] were re-
peated with the latest release of ROOT; the results are displayed in figure 7. No significant
changes with respect to the original measurements of [16] were detected: RDataFrame is the
fastest interface ROOT offers to analyse ROOT data if one takes into account the simplicity of
expressing parallelism, although single-thread execution suffers from an important overhead
with respect to direct usage of TTree. The cause of such overhead has been identified and
mitigations will be introduced in future releases.

6 Conclusions and Future Work

We presented a modern, declarative, parallel framework for data analysis and manipulation.
RDataFrame is officially part of ROOT as of version 6.14, offers a C++ interface as well as
Python bindings and it has already been employed successfully in real-world HEP analyses.
RDataFrame’s task-based parallelism scales successfully to many-core architectures.

Future work will revolve around offering more “pythonic” PyROOT bindings, including
import/export of numpy arrays, low-level performance optimization, especially aimed at re-
ducing single-thread overhead with respect to direct TTree usage, and integration with other
ROOT interfaces such as TMVA. In addition, promising R&D on distributed execution of
RDataFrame-based analyses is being carried on (see [7]), framing RDataFrame as a real
“Swiss Army knife” for HEP data processing.
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