
THE WEB AS THE PRIMARY CONTROL SYSTEM USER INTERFACE*

R. Neswold†, B. Harrison‡, Fermilab, Batavia, USA

Abstract
Fermilab's Control System uses a proprietary applica-

tion framework written decades ago. Considered state-of-
the-art at one time, the control system now lacks many
features we expect from a modern interface and needs to
be updated. Our investigation of Web browsers and Ja-
vaScript revealed a powerful, rich, and state-of-the-art de-
velopment environment. We discuss JavaScript frame-
works, JavaScript language features, and packaging tools.
We also discuss issues we need to resolve before we are
confident this can become our primary application plat-
form.

INTRODUCTION
We set out to reimagine accelerator control applica-

tions. Exploring modern development tools and current
best practices help us move away from existing, aging de-
pendencies while improving the users' experience.

Fermilab's parameter page application is broadly con-
sidered to be the workhorse of the control room. The pa-
rameter page allows operators to freely request live data
from any device in the control system. Key features in-
clude the ability to manipulate devices, query the control
system for meta-information about a given device, plot
the data over time, and provide textual context for the set
of devices. The parameter page application also allows
users to save their set of queries and notes for easy re-
trieval and, therefore, has become a simple way for ma-
chine experts to create basic applications. Many other ap-
plications are structured views of data that allow the user
to read and manipulate data in a predefined, restricted,
way.

We found these features in common with modern dash-
board applications. Dashboards offer a series of configu-
rable panels that can be added to a view and saved for
later. Views are for a specific task or related data. Dash-
boards in the browser allow for easy shared access to
saved views. Browsers also provide many accessibility
features that would require lots of effort to implement in
traditional applications. We can consider JavaScript appli-
cations so readily because we have an existing client li-
brary that allows for streaming accelerator data from the
control system to JavaScript via WebSockets.

Identifying the dashboard's component-like structure
led us to investigate web application frameworks that sup-
port self-contained and reusable code. We aim to provide
operators with a blank canvas and the ability to intuitively
add new panels with standard components. They then
save this view and get a unique endpoint that they can re-
turn to in the future. We hope that this component-based

design encourages developers to reuse and modify code
rather than reimplement very similar features over many
applications. In our investigation, we looked at frame-
work maturity, adoption, and documentation. While oth-
ers like Angular, VueJS, and Java fulfilled the require-
ments, ReactJS's ubiquity, quality documentation, and
ease of use made it stand shoulders above.

INVESTIGATING REACT
React[1] is a JavaScript library used to create "compo-

nents" along with an engine that efficiently renders
changes in the DOM. A component is a JavaScript mod-
ule that renders HTML elements and manages the state
associated with them. Each component is self-contained;
the outside state is provided when the component is cre-
ated, but from that point on, the component updates its
own, internal state. Since components are insulated from
external effects, they can easily be combined to make
more complicated components. React-based applications
are nothing more than a series of nested components.

The React team provides a command-line tool to help
set up a new React project called create-react-app.
This tool creates a directory tree containing initial, sample
JavaScript source along with the necessary configuration
files to build your application. It also sets up an area used
for creating unit tests for your project. As your application
grows, tests should be added to make sure previously
working features still work. The build environment in-
cludes another powerful feature where, after successfully
building the project, a web server is launched to run your
application. The server listens on the localhost address
and opens a tab in the default browser on your desktop
displaying your application.

React projects typically use an extension to JavaScript
called JSX[2] which makes the rendering code much eas-
ier to understand. JSX allows you to use HTML-style tags
in your JavaScript code, rather than the explicit function
calls it takes to create the elements. Files using JSX nota-
tion have the file extension .jsx. When building the ap-
plication, files with this extension are processed by con-
verting any JSX notation into calls to createElement()
rendering a .js file. The resulting file has the normal .js
extension and can be loaded by the browser.

Aside from the component hierarchy, applications also
require some logic to manage global state, interface to 3rd
party libraries, and even to pass state between compo-
nents. This logic can get complicated, and due to JavaS-
cript's dynamic typing, simple mistakes aren't necessarily
caught until the code path is executed, resulting in run-
time errors. Fortunately, we found that we could use Mi-
crosoft's TypeScript language with our React projects,
which eliminated a whole class of bugs in our code and
helped speed up our development.

* This manuscript has been authored by Fermi Research Alliance, LLC
under Contract No. DE-AC02-07CH11359 with the U.S. Department of
Energy, Office of Science, Office of High Energy Physics.
† neswold@fnal.gov
‡ beau@fnal.gov

FERMILAB-CONF-19-511-AD

This manuscript has been authored by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the U.S. Department of
Energy, Office of Science, Office of High Energy Physics.

TypeScript[3] is a free, open-source transpiler created
by Microsoft which adds static type-checking to JavaS-
cript. It follows most of JavaScript's syntax, except that
function parameters and variables, are annotated with
type specifications. TypeScript also introduces useful data
types (like tuples), which JavaScript doesn't have, allow-
ing you to write more expressive code.

Before the browser can run the code, the TypeScript
source (.ts) is transpiled to JavaScript where type anno-
tations are removed, and non-standard data types are con-
verted to JavaScript counterparts. Although the end prod-
uct is dynamically-typed JavaScript, the code has gone
through extensive type analysis resulting in much fewer
run-time errors. We were also happy to see that many 3rd-
party libraries include a TypeScript declaration file so that
you benefit from strict type-checking while using their
API. We found that using TypeScript improved our
productivity, even with simple examples, because we
spent less time in the debugger analyzing exceptions
caused by typing errors.

TypeScript can transpile to older versions of JavaScript,
too, so, if you need to use an older browser, it can gener-
ate JavaScript that still implements modern behavior but
uses older JavaScript features to implement them (of
course, the resulting code is larger.) TypeScript also sup-
ports JSX syntax, so React source benefits from JSX's no-
tation and TypeScript's code analysis.

Figure 1 shows an example of a simple React compo-
nent. This component renders as a label, a text input field,
and a text area to display processed output. Lines 4-7 is
an example of TypeScript defining the layout of an anon-
ymous JavaScript object. Line 9 shows how to attach type
annotation to a variable. In this case, we’re using a class
name that uses generics to specify what type is used when
passing in the component’s properties. This function re-
turns an HTML element that gets rendered on the web
page. Lines 14-25 use JSX notation to specify the top-
level element and its nested child elements. This notation
is much easier to understand than the JavaScript functions
calls required to create the elements. Note also, in the JSX
syntax, that we inject the value of variables into the ex-
panded output by putting the variable name in curly
braces. Line 11 shows how to allocate state which is used
each time the function is called. The function us-
eState() returns the current state and a function to call
to update the state. React uses the update function to track
when a component’s state changes so it can determine
which subset of the page needs re-rendering. In this ex-
ample, as the text is added, it is copied to the paragraph
element. When the length of the string reaches
maxLength characters, it gets displayed in red, rather
than black.

The default HTML page for a React app is mostly
empty. The body element typically contains a single div
element with the ID of “root.” To get everything started,

 1 import React, { useState } from 'react'
 2 import './ReactiveInput.css'
 3
 4 interface ReactiveInputProps {
 5 label: string,
 6 maxLength?: number
 7 }
 8
 9 const ReactiveInput: React.FunctionComponent<ReactiveInputProps> =
10 ({ label, maxLength = Infinity }) => {
11 const [currInput, setCurrInput] = useState('');
12
13 return (
14 <div className='reactiveInput'>
15 <label htmlFor='reactiveInput'>{label}</label>
16 <input
17 type='text'
18 name='reactiveInput'
19 value={currInput}
20 onChange={(event) => {setCurrInput(event.target.value)}}
21 />
22 <p className={currInput.length > maxLength ? 'invalid' : ''}>
23 {currInput}
24 </p>
25 </div>
26);
27 }
28
29 export default ReactiveInput;

Figure 1: Simple Example of a React Component

the JavaScript starting function would, in the example,
contain the following call:

ReactDOM.render(
� <ReactiveInput
� label=’Hello ICALEPCS 2019’
� maxLength={10} />,
� document.getElementById('root')
�);

Figure 2 shows the resulting web page, with sample
text, already entered.

Building React Projects
When working with JavaScript, the tool that builds

your project manages dependencies, runs tests, and de-
ploys your application is npm[4]. npm was developed for
NodeJS as their package manager and has evolved to in-
clude tools useful for client-side development. You use
npm to install global tools like TypeScript (npm install
-g typescript) or the project creation script for React
(npm install -g create-react-app). npm also in-
stalls 3rd-party libraries used by your project, along with
their dependencies.

The chain of events that build and prep your application
for deployment begins with “npm run build”. This
command runs a series of tools that are unique to a
browser’s model of loading code. To run your application
in the browser’s JavaScript interpreter, it needs to see all
the JavaScript source used in an application; hence,
there’s no compile/link cycle. Instead, npm runs the pro-
ject through a series of tools that try to produce the small-
est sized JavaScript possible to shorten the load-time of
your application. It also runs tools that rewrite portions of
your code to maximize compatibility with your set of tar-
geted browsers.

In our React applications, the first tool used is the
TypeScript transpiler. As mentioned earlier, this step does
extensive code validation based on the added type annota-
tion. The validated code is emitted as JavaScript and is
passed to the next tool, Babel.

Babel[5] is a transpiler, like TypeScript, but its mission
is to rewrite -- if necessary -- the JavaScript so that it can
run on the set browsers you specify. If your site needs to
run on older browsers, you would add that requirement to
the Babel configuration, and Babel would make sure that,
no matter what advanced features of JavaScript you use,
it’ll run on that browser. Of course, if you target more re-
cent versions of browsers, Babel passes more of your
code through, untouched.

Babel supports plugins, and many are available in case
you need other translations than compatibility. In our Re-
act projects, Babel is used to translate the JSX syntax into
JavaScript.

Once your project’s code has been prepped, the last tool
invoked is WebPack[6]. WebPack’s primary purpose is to
combine all your source, and the source of 3rd party li-
braries used by your project, into one, large source file.
As can be imagined, this could end up being quite large

and, therefore, WebPack’s secondary purpose is to make
the source code as small as possible. It does this using
several strategies. First, it makes sure that, if several mod-
ules import a library, it only gets included once. Next, it
makes a pass through the source and removes code that
isn’t used (i.e., dead-code elimination.) These first steps
can significantly reduce the final size of the project, but
WebPack performs one more translation, called “minify.”
In the “minification” step, all extraneous whitespace (and
comments) are removed, and identifiers (like variable and
function names) are shortened. Once the build is com-
plete, the project’s source isn’t human-readable, but it’s
easily read and run by a browser and is much smaller than
the original body of source.

Developer Tools
At the time of this conference, three major browser

cores have emerged: Mozilla's "Gecko" (used in Firefox),
Apple's WebKit (used in Safari), and Google's ChromeKit
(used in Chrome and Microsoft's Edge browser.) Each
core closely follows and implements the latest Web
Standards. Each core also has an advanced JavaScript en-
gine that uses a just-in-time (JIT) compiler to speed up
hot-spots in your code. Also, most importantly, all these
browsers come with a rich suite of developer tools. Usu-
ally tucked away in a menu, selecting the developer tools
splits the current web page into two panes: one contains
the rendered web page and the other displays the interface
of the tools.

The debugger allows setting breakpoints, single-step-
ping through code, examining variables, and viewing the
stack, as you would expect. It is more than a source code
debugger, however. It also allows navigating the DOM
tree shown in the web page; as you move the mouse cur-
sor over DOM tree elements, regions of the web page are
highlighted in real-time. Selecting elements in this view
displays their CSS attributes in a side panel. Changes to
these attributes are reflected immediately on the rendered
document allowing you to try tweaks to the page without
going through the build cycle.

The developer tools also include several profilers. Once
the application has run through the code profiler, the
source code view is annotated to show the hot spots. A
"flame view" is also available to show the call stack and
how much time is taken at each level. The code profiler
also includes timing information for the GPU, which

Figure 2: Sample output from React Example

measures the rendering time of the page. There's a
memory profiler to observe heap usage which can detect
memory leaks or see if your code is invoking too many
garbage collections. A network profiler shows how long it
takes to load each resource in your application.

Aside from helping one to find and fix software bugs,
these tools help streamline your code and minimize load
times. We were delighted with the breadth of develop-
ment covered by these tools.

Examples
Throughout our investigation, we found React easy to

understand and use. React’s component model isolates its
logic from the rest of the application’s so you feel confi-
dent in the results. Through our efforts, we developed a
handful of example applications, each focusing on a per-
ceived need for our department. In doing so, we became
aware of several excellent, 3rd party libraries.

Material Design By recommending a framework, like
React, we get consistency in the programming model.
However, web programming also requires layout design
and style guidelines, and so we need to address styling
consistency. Specifically, we don’t want each application
to have a different look and feel.

Google has produced a set of guidelines, based on their
research and experience, called Material Design[7].
Google uses them on the Android platform and web inter-
faces, and they closely describe other mobile platforms’
interfaces. By following these guidelines, our applications
will look attractive and consistent and will feel familiar
and intuitive to our users. The npm repository has several
React libraries that make it easy to follow these guides.
We’ve only started using these libraries, but we feel it’s a
quick way to get our custom components to look profes-
sional.

Nivo Charts Plotting data is a staple in control’s soft-
ware, so we created React components that wrapped Ja-
vaScript chart libraries. One library, in particular, stood
out for both its polished presentation of data as well as
how many chart types it supports. The library is called
Nivo Charts[8], and it lets you visualize data in many
ways. It supports over 20 different types of charts, and
each type has a set of variations. Their library can render
most charts in two ways: using the HTML canvas element
or generating SVG elements. Each has pros and cons, so
the choice depends on the features you need and how
much data you have to display. Charts rendered to SVG
show additional information when the mouse cursor hov-
ers over it. Charts using the canvas element don’t have
this feature. However, the canvas-based charts can handle
lots of data points quickly, whereas SVG charts should re-
strict the quantity of data to keep it responsive.

WebGL Pushing our investigation further, we won-
dered how easy would it be to model our data using 3D
graphics. We felt there might be situations where it would
be useful to visualize what’s going on in the machine, and
we wanted to see what it would take to do this. We were
pleased to find ThreeJS[9], a JavaScript library that wraps
the WebGL API into an API that’s easier to use. Initially,

we created 3D objects programmatically but building
more complicated models seemed daunting. Fortunately,
ThreeJS can import model files in several formats. We
used Blender3D to create a motion control station model
and then exported the data. Our web application was able
to read in the model, render it, and control it.

Progressive Web Apps Our last investigation was to
create a “progressive web app” (PWA). “Progressive Web
Apps provide an installable, app-like experience on desk-
top and mobile that are built and delivered directly via the
web. They're web apps that are fast and reliable”[10].

Progressive Web Apps are attractive because they have
the look and feel of a native application that runs on any
platform, and we only wrote one application. The essen-
tial requirement for a progressive web app is to include a
manifest file that tells the browser how to display the ap-
plication and where to find the icon set. Google’s PWA
checklist provides details on what features are to be im-
plemented to be considered a PWA. Chrome also has a
built-in auditing tool, Lighthouse, to evaluate your adher-
ence to the PWA standards.

The major hurdle for most web applications not feeling
native is the fact that they don’t display and have limited
interactions when you are offline. PWAs cache useful re-
sources allowing users to interact with the application
even when they offline. We plan to conform to this PWA
standard and imagine it could be useful to allow users to
change configurations or refer to notes when offline.

Remaining Issues
Although our investigation showed great promise, there

are still several details we need to resolve before commit-
ting to web applications. One important detail relates to
deployment. How do we organize the apps on the web-
server? How do new applications get added to this
namespace? Is there a main page with links to each appli-
cation? Do we create a categorization system to find an
app easier?

Another concern is about version management. npm al-
lows a project to track the latest versions of the libraries it
uses. In the short time that we’ve been developing, we’ve
seen quite a few patch-level updates. It may make sense
to maintain the framework (React, in our case) as a sepa-
rate resource to download and not require applications to
include it in their web bundle. This would allow us to
keep the framework up-to-date, and applications wouldn’t
have to be rebuilt each time a critical update is released.

CONCLUSION
Modern browsers provide a powerful and compelling

environment for hosting acceleration applications. We are
convinced that using web apps is the direction our depart-
ment should take. There are comprehensive development
tools already in browsers to handle all aspects of web de-
velopment. Frameworks provide a professional, intuitive
experience for users, and they hide browser differences
from programmers to the point that they also work on mo-
bile devices. Some frameworks also seamlessly support

progressive web apps, so mobile users feel they’re run-
ning native apps. Tools, like TypeScript and JSX, move
many run-time issues to compile-time, making it easier to
produce correct code. Most importantly, all these technol-
ogies are backed by huge companies (Google, Apple, Mi-
crosoft, Facebook) that have a stake in the success of the
web.

REFERENCES
[1] “React - a JavaScript library for building user interfaces”,

https://reactjs.org/
[2] “JSX - XML-like syntax extension to ECMAScript”,

https://facebook.github.io/jsx/
[3] “TypeScript - JavaScript that scales”, https://www.type-

scriptlang.org/
[4] “npm - build amazing things”, https://www.npmjs.com/
[5] “Babel - The compiler for next generation JavaScript”,

https://babeljs.io/
[6] “webpack”, https://webpack.js.org/
[7] “Design - Material Design”, https://material.io/design/
[8] “Home - nivo”, https://nivo.rocks/
[9] “three.js - JavaScript 3D library”, https://threejs.org/

[10] “Progressive Web App Checklist | Google Developers”,
https://developers.google.com/web/progressive-web-
apps/checklist

