FERMILAB-SLIDES-18-140-AE-E

Doping liquid xenon with light elements

Hugh Lippincott, Fermilab

COFI November 29, 2018

This manuscript has been authored by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy, Office of Science, Office of High Energy Physics.

- Limited at low mass by detector threshold
- Limited at high mass by density
- Eventually limited by neutrinos

So where are we? (LZ edition)

$$\langle \sigma v \rangle_{ann} \approx 3 \times 10^{-26} \text{cm}^3 \text{sec}^{-1}$$

$$\approx \frac{\alpha^2}{(200 \text{GeV})^2}$$
Coupling proportional to mass (e.g. via higgs)
$$\int_{0}^{0} \frac{\beta v}{G^2 + 1} = \frac{\beta v}{G^2 + 1} \int_{0}^{\infty} \frac{\beta v}{G^2 + 1} \int_{$$

"This era will answer the question: does the dark matter couple at O(0.1) to the Higgs boson"

N. Weiner, CIPANP 2015

The case for dark matter

- We know it interacts gravitationally
- It is "dark" should not interact with light or electromagnetism
- Nearly collision less

 $\sim 10^{-20} \text{ eV} \leftarrow$

Slow

 $m_{\rm DM}$

DM Prognosis?

Bad news: DM-SM interactions are not obligatory If nature is unkind, we may never know the right scale

DM Prognosis?

Bad news: DM-SM interactions are not obligatory If nature is unkind, we may never know the right scale

Good news: most *discoverable* DM candidates are in thermal equilibrium with us in the early universe

Courtesy G. Krnjaic

Thermal dark matter

- "Most discoverable DM candidates are in thermal equilibrium" G. Krnjaic
 - If we can detect it, it's likely that it was in equilibrium (e.g. interacted enough)
 - Thermal dark matter has minimum annihilation rate (to set relic density)
 - Doesn't care about initial conditions (washed out by thermal bath) makes modeling easier
 - Limited viable mass range (to a range that is basically within reach)

Thermal dark matter

Are there actual candidates?

W, Z

 χ

• Annihilation cross section needed for the relic abundance

$$\langle \sigma v \rangle_{ann} \approx 3 \times 10^{-26} \mathrm{cm}^3 \mathrm{sec}^{-1}$$

- New weak scale particle has to be heavier than ~a few GeV
 - Lee and Weinberg, PRL 39 (1977) 165-168

$$\sigma v \sim \frac{\alpha^2 m_{\chi}^2}{m_Z^4} \sim 10^{-29} \text{cm}^3 \text{s}^{-1} \left(\frac{m_{\chi}}{\text{GeV}}\right)^2$$

Are there actual candidates?

- Light dark matter needs new forces (although we might already be there in canonical WIMP dark matter anyway)
 - Asymmetric DM
 - Secluded DM
 - Forbidden DM
 - SIMP
 - ELDER
 - Freeze in models

1707.04591

gamma-X / non-Gaussian leakage events in xenon TPCs [38]. Ideally, confirmation of a discovery tes from an experiment utilizing a different technology, and thus subject to a different set o What do you need for low mass?

$$\frac{dR}{dQ} = \frac{\rho_0}{m_\chi} \times \frac{\sigma_0 A^2}{2m_p^2} \stackrel{6}{\times} F^2(Q) \times \int_{v_m}^{v_{esc}} \frac{f(v)}{v} dv$$

gamma-X / non-Gaussian leakage events in xenon TPCs [38]. Ideally, confirmation of a discoverties from an experiment utilizing a different technology, and thus subject to a different set o What do you need for low mass?

$$\frac{dR}{dQ} = \frac{\rho_0}{m_{\chi}} \times \frac{\sigma_0 A^2}{2m_p^2} \overset{6}{\times} F^2(Q) \times \int_{v_m}^{v_{esc}} \frac{f(v)}{v} dv$$

R(cts/10kg/yr) for 10⁻⁴⁵ cm², 10 GeV

gamma-X / non-Gaussian leakage events in xenon TPCs [38]. Ideally, confirmation of a discovery tes from an experiment utilizing a different technology, and thus subject to a different set o What do you need for low mass?

$$\frac{dR}{dQ} = \frac{\rho_0}{m_{\chi}} \times \frac{\sigma_0 A^2}{2m_p^2} \overset{6}{\times} F^2(Q) \times \underbrace{\int_{v_m}^{v_{esc}} \frac{f(v)}{v} dv}_{v_m} dv$$
$$v_m = \sqrt{Qm_N/2m_r^2} \qquad v_{esc} = 544 \text{ km/s (current value)}$$
$$m_N \text{ is mass of nucleus} \qquad m_r = \frac{m_N m_{\chi}}{m_N + m_{\chi}}$$

- Low threshold
- Low mass target (for better kinematic match to the dark matter mass)
 - For given Q, v_m is minimized when $m_n = m_\chi$

gamma-X / non-Gaussian leakage events in xenon TPCs [38]. Ideally, confirmation of a discoverties from an experiment utilizing a different technology, and thus subject to a different set o What do you need for low mass?

gamma-X / non-Gaussian leakage events in xenon TPCs [38]. Ideally, confirmation of a discovery tes from an experiment utilizing a different technology, and thus subject to a different set o LIGNT TATGETS IESS SENSITIVE TO HAIO UNCERTAINTY

Light targets less sensitive to halo uncertainty

What don't you need for low mass?

A lot of mass

LUX-Zeplin (LZ)

- 7 tonne active LXe TPC
 - Heavy target
 - Excellent self shielding
 - Good discrimination
 - Low threshold (<3 keV)
 - Huge effort to make it clean and low background
- >30 institutions, ~200 people
- Now under construction in Lead, SD

Two phase Xenon TPCs

- Interaction in the xenon creates:
 - Scintillation light (~10 ns)
 - called SI
 - ionization electrons
- Electrons drift through electric field to liquid/gas surface
 - Extracted into gas and accelerated creating proportional scintillation light - called S2

Two phase Xenon TPCs

- Excellent 3D reconstruction (~mm)
 - Z position from SI-S2 timing
 - XY position from hit pattern of S2 light
 - Allows for self shielding, rejection of edge events
- Ratio of charge (S2) to light (S1) gives particle ID
 - Better than 99.5% rejection of electron recoil events

LUX-Zeplin (LZ)

LUX-Zeplin (LZ)

Can we add He or H2 to LXe?

- Dissolve small quantities of He/H2 in liquid xenon
- Extend the reach of a detector like LZ (or XENONnT or PandaX, etc)
- Add new targets to field of direct detection
 - No existing experiments using either
 - Talk on HeRALD by H. Pinckney next
 - NEWS-G gas detector in Canada another contender
- Capitalize on investment in large detectors by adding flexibility

Dissolving He/H in LXe?

- LUX fill data
- Some residual He in the source bottles
- Data imply 3e-3 mass fraction for 1 atm partial pressure

Dissolving He/H in LXe?

 $M_{He}/M_{Xe} \sim 0.1\%$

Backgrounds

- The longest known radioisotope of He (6He) decays in <1 s
 - No new backgrounds introduced (tritium?)

• Self shielding is not effective in He/H-only detector

Signal de

- Helium or Hydrogen recoils will interact with xenon atoms and electrons
 - Excitations will be xenon excitations
 - Alpha particles for example
- Keep same photon detection schemel

Xenon microphysics

Xenon recoils in LXe lose a lot of energy to heat (Lindhard factor)

He

35

- Less than 20% of a ~<7 keV
 recoil goes into detectable ge signal
- The rest goes into nuclear collisions that lead to heat

e-

Xe

Not to scale

• Light nuclei - fewer strong nuclear collisions

Modeling He recoils in LXe (v1)

- Stopping and Range of Ions in Matter (SRIM)
- Calculate the energy lost to nuclear (heat) and electronic (signal) stopping

10 keV Xe in LXe ~100 A ranges

10 keV He in LXe ~1000 A ranges

Modeling He recoils in LXe (v1)

- Stopping and Range of Ions in Matter (SRIM)
- Calculate the energy lost to nuclear (heat) and electronic (signal) stopping

Modeling He recoils in LXe (v2)

- Noble Element Simulation Technique (<u>NESTv2</u>)
 - Data driven model for signal processes in LXe, including alpha data from LUX and test chambers
 - High energies, but at least it's real He nuclei in LXe

Modeling H recoils in LXe (SRIM)

A key question

• What happens to S2/S1 partitioning?

Xenon microphysics

• What happens to S2/S1 partitioning?

CRESST data in scintillating bolometers

NB: Different microphysical process (heat v. electronic)

What does it look like in LZ?

- Put this all together into single model
- Use the LZ Geant4 detector and optical transport model
 - See "Projected Sensitivity of LZ" (1802.06039)
- For S1/S2 analysis, threshold is determined by S1
 - Partitioning into photons and electrons matters
 - Run extreme cases for He NR-like and ER-like
 - Used SRIM for H looks similar but slightly better

Energy threshold

S2-only analysis

- Photon detection efficiency (S1) is about 10%
- Electron detection efficiency is (we hope) about 100%
 - High gain on S2 channel (80 phd/e-)

Energy threshold

• 3 electron threshold assumed for S2 (>250 photons)

Making projections

• 0.3% loading (1 bar partial pressure) - 15 kg, 20 days for S2-only, 100 days for S1/S2

- Location of LZ Helium lines depends critically on assumed signal yield
 - ~225 events/day/pb with S2 only at 100 MeV WIMP with this yield
- Dotted line is 5e- S2-only threshold

With Hydrogen

- Projection from calculating yields with SRIM + LZ detector model
 - Definitely to be taken with grain of salt
- 0.0375% H2 (0.1 bar partial pressure), 1.9 kg, 500 days

SD Hydrogen

- Projection from calculating yields with SRIM + LZ detector model
 - Definitely to be taken with grain of salt
- 0.0375% H2 (0.1 partial pressure), 1.9 kg, 500 days

What do I w

- Helium gas and PMTs are not a good mix
- Diffusion exponentially suppressed by temperature (Arrhenius relationship)
- Calculation suggests 500 days at 1 bar/
 165 K before tube becomes inoperable
- Exquisitely sensitive to temperature, and that's pretty tight...
- Needs to be tested
- Could use SiPMs...

What do I worry about (H)

- PMT diffusion is suppressed
- Hydrogen is flammable in mine environment
- Purification getter will take out the H2
- Suppression of S2 production
 - Molecular modes can slow down electrons
 - Could recover with increased voltage

What do I worry about

- This is still fairly speculative
 - Henry's coefficients not comprehensively measured
 - Temperature dependence, diffusion, etc?
 - Signal yields depend on modeling and MeV scale data

Monoenergetic neutron scattering experiment is where I would start

What do I worry about

- Cryogenics what does the presence of the non-condensible gas do to our cryogenics
 - Bubble He/H2 through the bottom of the cryostat?
 - Phase separated at weir drain (in LZ design)?
 - Should be distilled out fairly efficiently
 - Introduction and mixing that worries me the most

He/H doping in LXe

- Physically possible
- Keep low background level achieved in LXe TPC
- Same signal readout with LXe sensitive light detectors
- Increased signal yield from He recoils
 - Lower energy thresholds for WIMP-He scattering
- Properties measurable using existing techniques
- Potential reach to well below 1 GeV dark matter
- Depends on properties that need to be measured

Backup

Neutron scattering measurement

Neutron scattering in SCENE

LAr-TPC

- Time of flight to measure the neutron timing
- Pulse shape discrimination(PSD) to select neutrons in the detectors
- Ntof time between beam pulse and neutron detector
- TPCtof time between beam pulse and LAr detector
- f90 PSD in LAr
- Npsd PSD in neutron detector

Neutron scattering with He in LXe

- In a doping measurement, for a given scattering angle, He recoils have more energy
 - Increased signal on top of that
- Pushes the peak out past the xenon background

Measures yield and S1/S2 response v. energy!