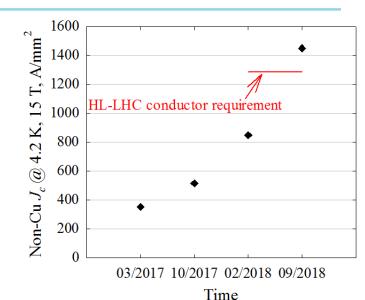


Recent progress with APC Nb₃Sn conductors

Xingchen Xu,FermilabXuan Peng,Hyper Tech Research, Inc.Jacob Rochester, Mike Sumption,OSU

Oct 29, 2018


The work is supported by an Fermilab LDRD and a US DOE SBIR. This manuscript has been authored by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy, Office of Science, Office

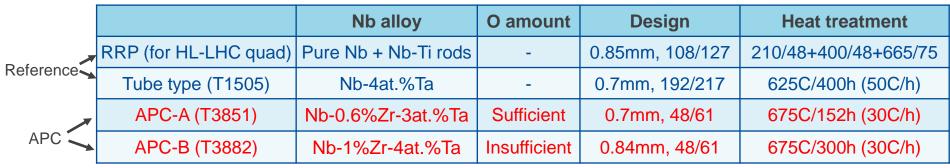
Introduction

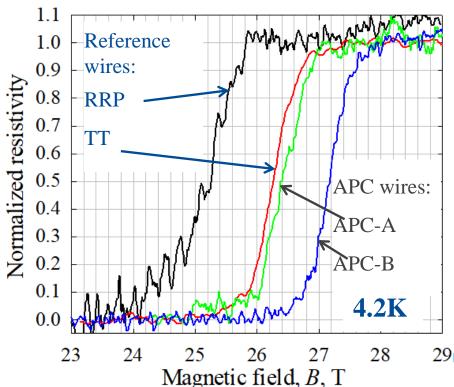
Brief History review

- 2014: started on monofilaments.
- Late 2015 and 2016: learning curves towards PIT wires.
- Development of "real" APC multifilamentary wires in fact started from 2017, supported by Fermilab LDRD and HyperTech SBIR from US DOE.
- Progress has been fast since then.

Current status:

- All wires made in HyperTech. Start with 0.75" billets based on 48/61 design, drawn to 0.5-1.0 mm diameters, 100-200 m total length per billet. 114/127 design is in preparation.
- Breakages in early 2017. Problem solved after improvement in wire recipe and quality. No breakage in the past 15 billets.
- □ Still working to improve wire recipe, which led to great performance improvement, but ongoing.


What is in this talk:

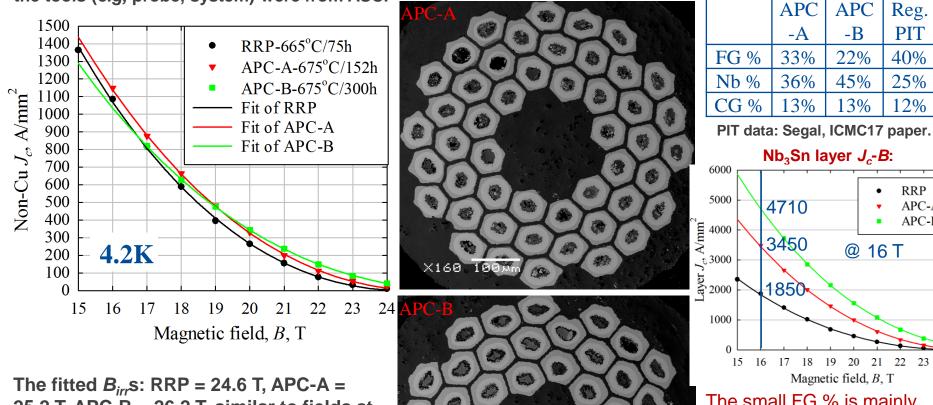

Tests of recent APC wires at NHMFL, including B_{c2} , non-Cu J_c , real estate, layer J_c , prospects.

X. Xu et al., "Ternary Nb₃Sn superconductors with artificial pinning centers and high upper critical fields", in review. Preprint URL: https://arxiv.org/abs/1810.10569

The $B_{c2}(B_{irr})$ issue of APC conductors

- Early monofilaments by HyperTech and multifilaments by Lesh showed low extrapolated B_{irr}, raising concerns.
- To see their real B_{c2} s, in Sept 2018, 2 reference and 2 APC wires were tested in a 31 T DC magnet at NHMFL.

- RRP: $B_{irr} = 24.6$ T, $B_{c2} = 25.8$ T at 4.2K.
- APC-A: ~1.2 T higher than RRP, despite insufficient Ta level \rightarrow reduced B_{c2} .


11/5/2018

🚰 Fermilab

• APC-B: *B*_{c2} and *B*_{irr} about 2 T higher than RRP.

Non-Cu J_c and Nb₃Sn Layer J_c

First, many thanks to David and ASC especially Griffin Bradford and Yavuz Oz for the help in the J_c tests. All the tools (e.g, probe, system) were from ASC. Reg.

×140 100 km

The small FG % is mainly due to high Nb %, due to unoptimized recipe.

By optimizing recipe, the Nb% can be reduced to 25%. Expect: FG% reaches ~40%. 😤 Fermilab

PIT

40%

25%

12%

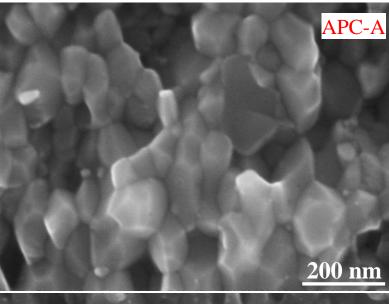
RRP

APC-A

APC-B

22 21

23 24

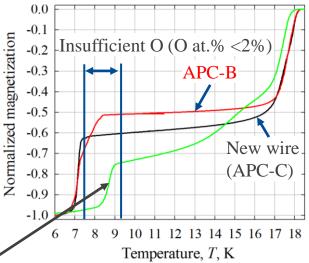


25.2 T, APC-B = 26.2 T, similar to fields at 1% of *R*-B curves.

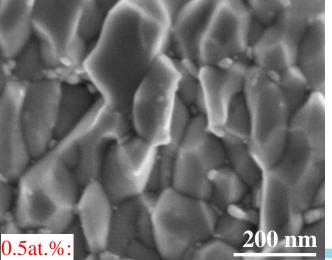
All wires are above HL-LHC specification.

APC-B had low non-Cu J_c due to low finegrain (FG) Nb₃Sn fraction.

Grain size and Nb₃Sn layer J_c



APC-B 200 nm


Average grain size: APC-A = 81 nm, APC-B = 72 nm. RRP (665 °C) = \sim 150 nm. Early APC = 35-45 nm.

Why GS so big? APC-A: 675°C, 0.6% Zr. (Less Zr \rightarrow fewer ZrO₂). APC-B: 675°C, short of O.

1%Zr needs 2 at.%O.

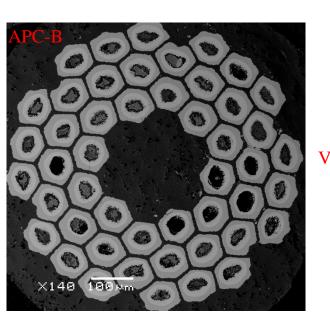
A 1%Zr wire w/ ~0.5 at% O: 675 °C HT \rightarrow average GS=110 nm. GS is sensitive to O at.%. Insufficient O \rightarrow big GS.

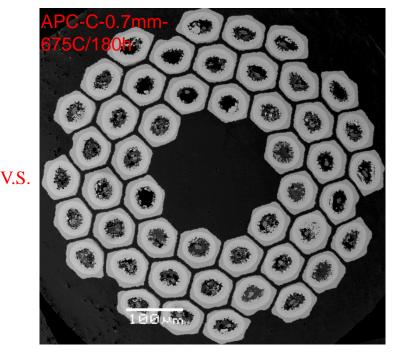
Expectations:

1%Zr + enough O → 675°C: GS \leq 65 nm. 650°C: GS \leq 50 nm. (based on previous data).

APC-B: 72nm→ 4710@16T. With GS of 50-65 nm, the expected 16T layer $J_c =$ 5000-6000 A/mm².

Fermilab


A wire fabricated after NHMFL tests


A new wire was fabricated after the NHMFL tests (let's call it APC-C).

- Still used Nb-1%Zr-4at.%Ta tube.
- O amount is sufficient (see *M*-*T* in previous page).

The grain size should also be smaller and the layer J_c should be higher (>5000 A/mm² at 16 T).

APC-C-0.7mm-675C/180h was much more fully reacted than APC-B. FG fraction is ~31%.

FG fraction (~31%) multiplied by layer J_c (~5000 A/mm² at 16 T), it is possible that its 16 T non-Cu J_c may have reached FCC spec.

But when tested at our maximum field, 15 T, it quenched, perhaps due to higher J_c and large D_s (70 µm). To 114/127 design to reduce D_s .

Summary

- 1. Development of APC-PIT multi wires started in 2017. Since then progress has been fast.
- 2. Tests up to 31 T at 4.2 K show that B_{irr} is 26-27 T, B_{c2} is 27-28 T, ~1-2 T higher than RRP.
- 3. R&D in the past two years has led to significant improvement of wire recipe and quality. The non-Cu J_c is on similar level with present RRP wires, in spite that the Nb₃Sn % is still low and grain size is not fully refined due to unoptimized wire recipe and heat treatment.
- 4. The Nb₃Sn layer J_c at 16 T is ~2.5 times of RRP despite grain size not fully refined.
- 5. The improvement is still ongoing. The following levels are expected.
 - 1) By improving conductor recipe and quality and heat treatment, the fine-grain Nb₃Sn fraction can be increased to \sim 40%, as in standard tube type and PIT wires.
 - 2) By optimizing O content and heat treatment, the grain size can be reduced to 50-65 nm or less, which leads to a Nb₃Sn layer J_c of 5000-6000 A/mm² for 4.2 K, 16 T.

If so, this means the 4.2 K, 16 T non-Cu J_c can reach 2000-2400 A/mm². This will surpass the FCC spec and also provide >30% margin.

Above 16 T, the APC conductors should give extra J_c gain due to higher B_{irr} and shift in F_p -B curve peak to higher fields.

Thank you for your attention

🔁 Fermilab