

Calibrating the Dark Energy Survey: The Role of DA White Dwarfs

J.A. Smith, D.J. Gulledge (APSU); J.M. Robertson (COMPASS Science Communication); M.B. Fix (STScI); S. Charbonnier (Ecole Polytechnique); D.L. Tucker, W. Wester, S.S. Allam (Fermilab); P-E. Tremblay (U. Warwick); G. Narayan (STScI); J. Marriner, B. Yanny, K. Herner (Fermilab); J. Lasker (U. Chicago)

> 21st European White Dwarf Workshop 2018 Austin, Texas 23 July 2018

This document was prepared by [DES Collaboration] using the resources of the Fermi National Accelerator Laboratory (Fermilab), a U.S. Department of Energy, Office of Science, HEP User Facility. Fermilab is managed by Fermi Research Alliance, LLC (FRA), acting under Contract No. DE-AC02-07CH11359.

Blanco + DECam

DARK ENERGY

Slide Credit: William Wester

The Dark Energy Survey (DES)

DARK ENERGY			
SURVEY			

Photometry

DES Photometric Calibration Requirements* (5-year, coadded) *From DES Scientific Requirements Document

DARK ENERGY SURVEY

- Internal: 2% rms on scales of 0.05°- 4°.
 Goals: 1% rms and/or over 160° in RA, 30° in DEC.
 → angular galaxy clustering
- **2.** Absolute Color: 0.5% (*g-r, r-i, i-z*); 1% (*z-Y*).

"Between-filters" calibration.

Photometry as a "low-res. spectrum"

 \rightarrow photo-z's, SNe k-corrections

- **3.** Absolute Flux: 0.5% in *i*-band. Relative to standard star BD+17 4708. C26202 Zeropointing the overall filter system.
 - \rightarrow comparison with other surveys (esp. for SNe)

Many parts to calibration

DARK ENERGY

DES Photometric Calibrations Flow Diagram (v4.1)

Credit: Douglas Tucker

- Nightly
 - Bias, darks, flat fields
- Periodic
 - Spectral scanning
 - Transfer function
 - Star flats
- Monitoring
 - Atmosphere aTmCAM / GPS
 - Cloud cover
- Absolute scale
 - White Dwarf
 - CALSPEC standards

DES Photometry: SV, Y1, (Y3)

DARK ENERGY SURVEY

• Photometric Global Calibration Module (PGCM)

- Observe nightly standards to create a sparse gridwork of tertiary standards.
- Use overlapping exposures to tie DES photometry to tertiary network.

Drlica-Wagner et al. 2018, ApJS, 235, 33 (Y1A1-Gold paper)

 $m_{inst} - m_{std} = a_n + b_n x (stdColor - stdColor_0) + kX$

Credit: Douglas Tucker

- *m*_{inst} is the instrumental magnitude, *m*_{inst} = -2.5log(counts/sec) (input)
- *m*_{std} is the standard ("true") magnitude of the standard star (input)
- a_n is the photometric zeropoint for CCD n (n = 1-62) (output)
- *k* is the first-order extinction (input/output)
- X is the airmass (input)
- b_n is the instrumental color term coefficient for CCD n (n = 1-62) (input/output)
- stdColor is a color index, e.g., (g-r) (input)
- stdColor₀ is a constant (a fixed reference value for that passband) (input)
- DES calibrations will be in the DECam natural system, but there may be variations from CCD to CCD within the DECam focal plane or over time.

a_n: Zeropoints and uncertainty as a function of exposure and CCD number

General Idea for Absolute Calibration with DA WDs

DARK ENERGY SURVEY

- Compare the synthetic magnitudes to the measured magnitudes of one or more DA WDs observed by the DECam.
- The differences are the zeropoint offsets needed to tie the DES mags to an absolute flux in physical units (e.g., ergs s⁻¹ cm⁻² Å⁻¹).
- For the synthetic photometry, the fit *model* spectra of the white dwarfs are generally used.

Plan: establish a "Golden Sample" of 30-100 wellcalibrated DA white dwarfs across the DES footprint.

Status: been collecting data since 2012.

FGCM Absolute Calibration

(also relevant to other calibration methods)

DARK ENERGY SURVEY

- Three CALSPEC standards in DES footprint. Only one is a faint standard. FGCM has absolute scale set to C26202.
- DES DR1: 3-5 mmag uncertainty, relative to C26202.
- Multi-year program of identifying white dwarf candidates (~100), obtaining spectra, and performing model fits giving synthetic spectra.

12

SOAR-4m Spectra of Candidate DA WDs

Synthetic photometry can be compared with observed mags.

A Representative Model Fit (SOAR-4m spectrum)

DARK ENERGY SURVEY

Credit:

One of the highest amounts of line-of-sight E(B-V)'s for our current sample.

But is this WD within the Local Bubble? Behind the screen of MW dust? *Or embedded within it?*

Credit: Deborah Gulledge

Test Run by FNAL Group

DARK ENERGY	/		
SURVET			

	g	r	i	Z	Y	
C26202	0.0285	0.0007	-0.0489	-0.0492	0.0034	AB offset
	0.0026	0.0029	0.0034	0.0025	0.0045	σ(AB offset)
LDS749B	0.0293	-0.0126	-0.0656	-0.0630	0.0316	AB offset
	0.0022	0.0039	0.0050	0.0030	0.0062	σ(AB offset)
WD0308-565	0.0221	-0.0237	-0.0805	-0.0822	0.0259	AB offset
	0.0066	0.0054	0.0058	0.0040	0.0047	σ(AB offset)
weighted avg	0.0285	-0.0072	-0.0592	-0.0598	0.0179	

We had to be careful as the synthetic magnitude can be mis-calculated if the HST Spectra doesn't cover the full DES wavelength range.

Future study will be to look at chromatic effects (LDS749B and WD0308-565 are White Dwarfs, C26202 is a solar analog) and other ways to reduce the σ (AB offset) or improve precision (check airmass of observation, for instance).

Bottom line: is that there are initial offsets that can be used to put the FGCM onto the AB scale. Future work will improve the precision.

Current Spectroscopic Results – 1.5m

DARK ENERGY SURVEY

- CTIO 1.5m:
- 154 total objects reduced:
 - 25 were targeted for the WD program: 8 identified WDs
 - Generally, they are too bright to use for DES calibration, but worked well as a training set.
 - Paper in preparation: Gulledge et al. (2019?)
- See Smith Poster for some of these.

- DARK ENERGY SURVEY
 - SOAR: (SuperCosmos + ATLAS selections):
 - 145 targets (so far): 11 DAs/ 12 DBs/ 2 magnetics/ 20 "other"
 - APO 3.5m: Mostly SDSS color selected
 83 targets: ~75% DA/ 2-QSOs/ 1-CV/ Handful of DB/Other
 - AAT 4m: 32 spectra obtained. Still in reduction
 - Magellan: 12 spectra (2016): 11 DAs
 - Still working on 2017 data and waiting for 2018 night

Imaging Follow-up

CTIO-0.9<u>m, WIYN-0.9m</u>

- 1. To obtain SDSS u-band photometry of Rowell & Hambly sample (to use color selection to improve success rate)
- 2. To monitoring candidates for signs of variability.

Currently, ~400 candidate white dwarfs have been imaged as part of the imaging follow-up program.

Conclusions

- DES continues to evolve in its calibrations
 - Advanced knowledge of the devices and readout
 - External inputs for clouds and the atmosphere
- FGCM reaches 2% requirements in magnitudes
- With knowledge of SEDs, 0.5% color uncertainties and sub-1% photometry has been achieved
- Work on absolute calibration continues and the white dwarf sample will have legacy with LSST etc.