The Operation of the Tevatron Vacuum system

Authors
David Augustine
Alex Chen
Scott McCormick
Outline

• Tevatron overview and some history
• Vacuum upgrades
• Cryogenic upgrades
• Maintenance and records
• Vacuum diagnostics
• Failures
• Lessons Learned
The Tevatron contains

- 24 Cryogenic loops.
- 48 Insulating vacuum systems
- 24 Cryogenic beam vacuum systems
- 29 Major and minor warm straights
- A cornucopia of gauges, valves, mechanical pumps, ion pumps, titanium sublimation pumps, and NEG
The Tevatron is installed under the original Main Ring Accelerator
Some history

- Originally Tevatron operated in fixed target mode
- Vacuum in warm insertion points was 10^{-8} Torr
- Insulating vacuum was 10^{-4} to 10^{-8} Torr
- Cryogenic temperature was 4 to 4.5 K
Cryogenic and vacuum upgrades

• Cryogenic system was upgraded
 – Magnets now operate colder which allows higher current on buss without quenching

• Warm vacuum insertion points were upgraded
 – Better choice of materials
 – Improved cleaning technique
 – Vacuum baking

• Reduced beam scattering due to poor vacuum
Tevatron Superconducting Dipole

Beam Vacuum

Pop-Up

LHe, SC WIRE

He Return

CVI

Insulation Vacuum Seal

Nitrogen
Cryogenic Beam Vacuum System

- No elastomers between the beam vacuum and atmosphere
- Ion pumps various types, area dependent
- Seals are all metal
- Gauges are thermocouple, cold cathode, and ion
- Vacuum pump out valves are all metal
- Isolation valves are metal sealed on the outside but o-ring sealed on the gate
Warm Beam Vacuum

• No elastomers between beam vacuum and atmosphere
• System mostly electro-polished stainless steel or ceramic
• Non metal objects are measured for out gas rate prior to installation
• Many objects vacuum baked *in situ*
• Electrostatic separator areas have all metal gate valves
Cryogenic Insulating Vacuum system

• One turbo molecular and roughing pump every 450 feet
• Vacuum breaks every 100 feet with isolation valves
• EPDM (Ethylene Propylene) o-rings specified
• Almost everything on the insulating vacuum system is sealed with o-rings
Maintenance records

• Then
 – Originally all installations and repairs entered into paper log books
 – Information difficult to find

• Now
 – All log books are web driven databases
 – Most accessible and editable outside of the Main Control Room
 – Electronic work list for work on operational equipment
Tevatron E-Log Maintenance entry

Tevatron E-Log 2011 17:27:17 Tue May 31 2011
-- Shot setup for store 8784 --

Start of Studies Notes:

Wed Jun 1 10:52:21:

- xz_bk

Wed Jun 1 10:53:04 comment by...xz_bk -- Tables showing the change to proton horizontal tune of +0.01 at collisions

Wed Jun 1 10:54:44: We lowered the Tev injection energy from 150.11 to 150.10 in order to reduce synchrotron oscillations at injection. - xz_bk

Wed Jun 1 16:53:10: Access to A-B and Transfer Hall: In addition to above entry techs Sal Slezak and James Williams installed turbo cart JP-1 on TEL-2. Techs Bob Steinberg and Bill Dymond changed out turbo stations at B-37 and A-47 locations. B37 Rougher out #32385, Turbo out #34972, Rougher in #41622, Turbo in #34932. A47: Rougher out #099403476 Edwards18, Turbo out #39752, Rougher in #35940, Turbo in #34952. Also did small solenoid work in ED to help re-open valves after compressor fan loss. Supervisor Scott McCormick.
Electronic Work List

Work Request

* - indicates required field

<table>
<thead>
<tr>
<th>Field</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Submitted by</td>
<td>@fnal.gov</td>
</tr>
<tr>
<td>Task Type</td>
<td>Choose wisely</td>
</tr>
<tr>
<td>Priority</td>
<td>Normal</td>
</tr>
<tr>
<td>After Hour Call In</td>
<td></td>
</tr>
<tr>
<td>Area</td>
<td>Select Area</td>
</tr>
<tr>
<td>Type</td>
<td>Select Type</td>
</tr>
<tr>
<td>Task Location</td>
<td>(be as specific as possible)</td>
</tr>
<tr>
<td>Job Title</td>
<td></td>
</tr>
<tr>
<td>Descriptive Job Summary</td>
<td></td>
</tr>
<tr>
<td>Duration</td>
<td></td>
</tr>
<tr>
<td>To the Attention of</td>
<td></td>
</tr>
<tr>
<td>Manpower</td>
<td></td>
</tr>
<tr>
<td>Does this job require keys?</td>
<td></td>
</tr>
<tr>
<td>Work Crew</td>
<td></td>
</tr>
<tr>
<td>LOTO coordinator</td>
<td></td>
</tr>
</tbody>
</table>

Options:
- Alignment
- ES&E
- Instrumentation
- NuMI
- Proton
- Trivation
- Controls
- Electricians
- Cryo
- Beams
- FESS
- Mech Support
- Projects
- Telecom
- Carpenters
- Electrical Task Manager
- Ironworkers
- Operators
- Piping Task Manager
- Technicians
- Construction Task Manager
- Electricians
- Janitorial
- Scientists
- Rigging Task Manager
- Welders
- Contractors Other
- Engineers
- Machinists
- Pipefitters
- Surveyors

Yes No

@fnal.gov / This job does not require a LOTO coordinator
Vacuum remote readouts

• Then
 – Limited remote control of vacuum hardware
 – Limited ability to data log past history of an individual device

• Now
 – Lots of computing power to data log thousands of devices
 – Vacuum read out and control pages readily accessible
An example of a Tevatron Vacuum page, house A-2 ACNET driven

<table>
<thead>
<tr>
<th>Loc</th>
<th>Pirani</th>
<th>Cold Cats</th>
<th>Valves</th>
<th>Ion Pmp/Gage</th>
<th>Misc/Pumps</th>
<th>Memo</th>
</tr>
</thead>
<tbody>
<tr>
<td>A21</td>
<td>TC1 <1.E-3</td>
<td>CC1 8.85-8</td>
<td>BVU</td>
<td>Open</td>
<td>AIRP 110.4</td>
<td></td>
</tr>
<tr>
<td>A22</td>
<td>TC2D <1.E-3</td>
<td>CC2D 9.62-8</td>
<td>CV2</td>
<td>0pen</td>
<td>IP2 1.91-10</td>
<td></td>
</tr>
<tr>
<td>A23</td>
<td>TC3R <1.E-3</td>
<td>CC3M 9.98-8</td>
<td>CV3U</td>
<td>0pen</td>
<td>TP3 0n</td>
<td></td>
</tr>
<tr>
<td>A24</td>
<td>TC4B <1.E-3</td>
<td>CC4B 7.41-8</td>
<td>CV4</td>
<td>0pen</td>
<td>IG3 Off</td>
<td>DRP 0K</td>
</tr>
<tr>
<td>A25</td>
<td>TC4U <1.E-3</td>
<td>CC4U 8.22-8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A26</td>
<td>TC5U <1.E-3</td>
<td>CC5U 8.90-8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A27</td>
<td>TC6D <1.E-3</td>
<td>CC6D 9.87-8</td>
<td>CV6</td>
<td>0pen</td>
<td>IP6 6.67-10</td>
<td></td>
</tr>
<tr>
<td>A28</td>
<td>TC7R <1.E-3</td>
<td>CC7R 9.76-8</td>
<td>CV7U</td>
<td>0pen</td>
<td>IP7 0n</td>
<td></td>
</tr>
<tr>
<td>A29</td>
<td>TC8U <1.E-3</td>
<td>CC8U 9.52-8</td>
<td>CV8</td>
<td>0pen</td>
<td>IP8 1.16-9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TC9U <1.E-3</td>
<td>CC9U 9.54-8</td>
<td>BVD</td>
<td>0pen</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bubble help is disabled - it can be enabled via Pgm_Tools.
An Example: Vacuum and Cryo @E4
An Example of Diagnosis
Failures
Tevatron repair

• Normal cryoloop
 – Seven days cold to cold with around the clock shifts

• Low Beta cryoloop
 – 12 days cold to cold with around the clock shifts
Typical Repair Routine

• During Warmup
 – Crews assigned
 – Insulating vacuum spoiled to assist warmup
 – Spares selected and tested
 – Equipment stationed in tunnel

• When Warm
 – Insulating vacuum pumped out
 – Insulating vacuum leak checked first
 – Cryogenic circuits leak checked next
 – Sometimes damage obvious ie a 4000 amp ground fault
Ground Faulted magnet
View of beam tube
Equipment

• Diffusion pump based leak detectors with upgraded electronics
• Electronic signal from all leak detectors fed to one custom computer (1 to 16 channel chart recorder lab view based)
• All signals can be analyzed at one time and compared to one another
Leak Detector
Chart Recorder
Chart of test
Lessons Learned
O-rings

Problem: original EPDM o-rings cleaned with acetone, causing o-ring to melt over time

Solution: switched to EPDM colorized series o-rings for easy identification to choose correct cleaning solvents
The O-ring fix continued

It takes many hours to disconnect, replace and o-ring.

We decided to vulcanize a new o-ring around the interface saving ~4 hours per interface.
The end of a great run

• Collider run to end FY 2011
• Performance of collider chain was stellar
• The Tevatron will be warmed to room temp
• Much of the vacuum infrastructure will be used in future neutrino projects
Acknowledgements

• This presentation was made possible by the gracious assistance of:
 • Lucy Nobrega, Cryomodule Test Facility Vacuum Engineer
 • Linda Valerio, Accelerator NuMI Upgrade Installation Engineer