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THE COMPACT MUON SOLENOID (CMS) DETECTOR AT 
LHC

Presenter
Presentation Notes
“CMS is a complex detector. It designed to see a wide range of particles and phenomena produced in high-energy collisions in the LHC. It has different layers of detectors that measure the different particles, and scientists use this data to build up a picture of events at the heart of the collision.”





OBJECTIVES

• Apply recent progress in Ma chine  Lea rning techniques rega rding a utoma tion 
of DQM scrutiny for HCAL

• To focus on the  Online  DQM.

• To compa re  the  pe rforma nce  of diffe rent ML a lgorithms.

• To compa re  fully supervised vs semi-supervised a pproa ch.

• Impa ct the  current workflow, ma ke  it more  e ffic ient a nd ca n gua ra ntee  tha t the  
da ta  is  use ful for physics a na lysis.
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• Make sure detector behaves well to perform sensible data analysis. 

• Reduce man power to discriminate good and bad data, spot 

problems, save time examining hundreds of histograms.

• By building intelligence to analyze data, raise alarms, quick feedback.

• Implementing the best architecture for neural networks

• Underfitting - Too simple and not able to learn

• Overfitting - Too complex and learns very specific and/or unnecessary features

• There is no rule of thumb

• Many, many, many…… possible combinations.

CHALLENGE
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WHAT IS DATA QUALITY MONITORING (DQM)?

• Two kinds of workflows: 

• Online DQM 
• Provides feedba ck of live  da ta  ta king. 

• Ala rms if something goes wrong.

• Offline  DQM
• Afte r da ta  ta king

• Responsible  for bookkeeping a nd ce rtifying the  fina l da ta  with fine  time  gra nula rity.
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HYPOTHESIS AND PROJECT QUERIES 

Queries 

• Ca n we  ma ke  a n a lgorithm tha t identifie s a noma lies in the  da ta  flow?

Hypothesis 

• We ca n deve lop a  ML a lgorithm tha t ta kes the  ima ges a s da ta  a nd 
de te rmine  whe ther or not a n e rror is  occurring.

Ra tiona le

• Since  this a lgorithm ta kes ima ges a s inputs it ca n lea rn to compa re  
the  ima ges given with a  ba se line  a nd correctly identify pa tte rns a nd 
devia tions from the  ba se line . 6



TOOLS AND DATA PROCESSING

• Working env: python J upyte r  notebook

• Kera s (with Tensorflow a s ba ckend) a nd Scikit-
lea rn

• Crea tion of a  mode l

• Tra in a nd te st its  pe rforma nce

• The  input da ta  consists of occupa ncy ma ps
• one  ma p for ea ch luminosity section

• Used 2017 good da ta  a nd genera te  ba d da ta  a rtific ia lly
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IMAGE ANALYSIS TERMINOLOGY

• Hot - ima ge  with noisy (red) cha nne ls
• Dea d - ima ge  with ina ctive  (blue ) cha nne ls
• Good - regula r ima ges tha t a re  ce rtified for a na lysis
• Model - a n ML a lgorithm’s structure  
• Loss - number tha t represents dista nce  from ta rge t va lue
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• Supervised and Semi-Supervised Learning 
• 5x5 problematic region with random location
• 5x5 (readout channels) problematic region with fixed location

Good Dead Hot

IMAGES AND READOUT CHANNELS USED AS INPUTS FOR THE ML ALGORITHM
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These images are examples of the input data for the ML algorithm and we are using 5x5 



SUPERVISED LEARNING
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• Trained only on good images

• Expected to see better reconstruction 
for good images and a much different 
reconstruction for bad images.

• Bad images have 5x5 bad regions

• Hot
• Dead

• Images have been normalized

• this architecture seems to perform best 
for us.

G
O

O
D

H
O

T
D

EA
D

Reconstruction

Reconstruction

Reconstruction

Distance

Distance

Distance

Good

Hot

Dead

11

SEMI SUPERVISED LEARNING
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ERROR DISTRIBUTION PER IMAGE CLASS



WHAT’S NEXT?

• Why a nd exa ctly wha t is  it 
lea rning?

• Ca n we  ma ke  it work with 
something more  rea listic?

• 1x1 ba d region (cha nne l)

• Ca n it identify wha t va lues should be  
expected a fte r ea ch lumi-section?

• Move  from a rtific ia l ba d da ta  to rea l 
ca ses of ba d da ta  (in progress)
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