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THE COMPACT MUON SOLENOID (CMS) DETECTOR AT

CMS DETECTOR L R T e LHC
Total weight : 14,000 tonnes 12,500 tonnes SILICON TRACKERS
Overall diameter : 15.0 m Pixel (100x150 ym) ~16m* ~66M channels

Overall length  :28.7m
Magnetic field :3.8T

Microstrips (80x180 pm) ~200m? ~9.6M channels

SUPERCONDUCTING SOLENOID
Niobium titanium coil carrying ~18,000A

MUON CHAMBERS
Barrel: 250 Drift Tube, 480 Resistive Plate Chambers
Endcaps: 468 Cathode Strip, 432 Resistive Plate Chambers

PRESHOWER
Silicon strips ~16m? ~137,000 channels

FORWARD CALORIMETER
Steel + Quartz fibres ~2,000 Channels

CRYSTAL
ELECTROMAGNETIC
CALORIMETER (ECAL)
~76,000 scintillating PbOWO, crystals

HADRON CALORIMETER (HCA
Brass + Plastic scintillator ~7,000 channels


Presenter
Presentation Notes
“CMS is a complex detector. It designed to see a wide range of particles and phenomena produced in high-energy collisions in the LHC. It has different layers of detectors that measure the different particles, and scientists use this data to build up a picture of events at the heart of the collision.”




OBJECTIVES

* Apply recent progress in Machine Learning technigues regarding automation
of DQMscrutiny for HCAL
* To focus on the Online DQM.
®* Tocompare the performance ofdifferent ML algorithms.

®* Tocompare fully supervised vs semi-supervised approach.

* Impactthe current workflow, make it more efficientand can guarantee that the
data is usefulfor physics analysis.



CHALLENGE

* Make sure detector behaves well to perform sensible data analysis.

* Reduce man power to discriminate good and bad data, spot

problems, save time examining hundreds of histograms.

* By building intelligence to analyze data, raise alarms, quick feedback.

* Implementing the best architecture for neural networks

* Underfitting - Too simple and not able to learn

* Qverfitting - Too complex and learns very specific and/or unnecessary features

* There is no rule of thumb

* Many, many, many.....possible combinations.
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WHAT IS DATA QUALITY MONITORING (DQM)?

''''''
X

. Analysis

* Two kinds of workflows:
1 ‘ Conditioﬁs B —
* Online DQM ™ cauditions | |Registy] Daiasers
* Provides feedback of live data taking. Tier-1s _ " _CAF
* Alarms if something goes wrong. - o
Simulatiéf
Validation

* Offline DQM
* Afterdata taking
* Responsible for bookkeeping and certifying the finaldata with fine time granularity.



HYPOTHESIS AND PROJECT QUERIES

Queries

* Canwe make analgorithm that identifies anomalies in the data flow?

Hypothesis

* Wecandevelop a MLalgorithm that takes the images as data and
determine whetherornotan erroris occurring.

Rationale

* Since this algorithm takes images as inputs itcan learn to compare
the images given with a baseline and correctly identify patterns and
deviations from the baseline.



TOOLS AND DATA PROCESSING \ I_\

* Working env:python Jupyter notebook Tensor

* Keras (with Tensorflow as backend)and Scikit-

Keras

®* Creation ofa model

* Train and testits performance

®* The input data consists ofoccupancy maps

®* one map foreach luminosity section . emn
7

®* Used 2017 good data and generate bad data artificially



IMAGE ANALYSIS TERMINOLOGY

* Hot-image with noisy (red)channels

* Dead -image with inactive (blue)channels

* Good-regularimages thatare certified foranalysis

* Model-an MLalgorithm’s structure

* Loss-numberthatrepresents distance from target value



IMAGES AND READOUT CHANNELS USED AS INPUTS FOR THE ML ALGORITHM

* Supervised and Semi-Supervised Learning
* 5x5 problematic region with random location
* 5x5 (readout channels) problematic region with fixed location
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Presenter
Presentation Notes
These images are examples of the input data for the ML algorithm and we are using 5x5 


SUPERVISED LEARNING
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HOT GOOD

DEAD

SEMISUPERVISED LEARNING

Reconstruction Distance
= e Trained only on good images
- e Expected to see better reconstruction
o for good images and a much different

0.0

reconstruction for bad images.

o _« k= < Badimages have 5x5 bad regions
- :ﬁ Bl * Hot
S « Dead
oz i :J--“ 01

| Distance.  Images have been normalized
R T * this architecture seemsto perform best
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ERROR DISTRIBUTION PER IMAGE CLASS
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WHAT'S NEXT? e Pl ™ @

* Why and exactly what is it
learning?

mushroom - % representation

* Can we make it work with
something more realistic?

Encode Decode

® 1x1 bad region (channel)

® Canitidentify whatvalues should be
expected aftereach lumi-section?

* Move from artificialbad data to real
cases ofbad data (in progress)
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