Accelerating Feldman-Cousins for NOvA using NERSC Supercomputers

Derek Doyle

This document was prepared by [NOvA Collaboration] using the resources of the Fermi National Accelerator Laboratory (Fermilab), a U.S. Department of Energy, Office of Science, HEP User Facility. Fermilab is managed by Fermi Research Alliance, LLC (FRA), acting under Contract No. DE-AC02-07CH11359.

NOvA Oscillation Analysis

- Measure parameters governing neutrino oscillations through
 - $\nu_{\mu} \rightarrow \nu_{\mu}$ and $\nu_{\mu} \rightarrow \nu_{e}$
 - $\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{\mu} \text{ and } \overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e}$
- Look for CP Violation
- Determine Neutrino Mass Ordering

normal hierarchy (NH)

 $= R(\theta_{23}) \cdot R(\theta_{13}, \delta_{CP}) \cdot R(\theta_{12})$

Measuring Oscillation Parameters

Comparing the data to our predictions, estimate the true parameters, exclude other regions of parameter space with some degree of certainty, conventionally in terms of σ

Parameter Estimation

- Goal: Determine the likelihood that $\vec{\theta}$ are the true parameters
 - Find $\vec{\theta}$ that maximize the Likelihood function: $\mathcal{L}(\vec{\theta}_{best})$

$$\chi^{2}(\vec{\theta}) \equiv -2\log \mathcal{L}(\vec{\theta}) = 2\sum_{i}^{bins} \left[e_{i}(\vec{\theta}) - o_{i} + o_{i}\log \frac{o_{i}}{e_{i}(\vec{\theta})} \right]$$

 $\vec{\theta}$: Set of Oscillation parameters o_i : Observed data $e_i(\vec{\theta})$: Expected observation

- To measure the significance with which we exclude other parameters, $\vec{\theta}$, as the true parameters, we calculate $\chi^2(\vec{\theta})$ and construct the test statistic, $\Delta \chi^2 = \chi^2(\vec{\theta}) - \chi^2(\vec{\theta}_{best})$
- Conveniently, this distribution converges to a χ^2 distribution under certain assumption
- Moreover, under these assumptions, $\sigma = \sqrt{\Delta \chi^2}$

- Often used for determining goodness of fit
- Repeating experiment may result in different
 observations
- Want to know the probability of finding a χ^2
- P-Value: probability of finding a χ^2 at least as large as than the one you measure
- Tells you how probable it was to measure a χ^2 by accident

$$p\text{-value} = \int_{\chi^2_{obs}}^{\infty} f(\chi) d\chi$$

- Critical Value: value of test statistic corresponding to a given p-value
- Report a significance in terms of the critical value of a standard normal distribution corresponding to that pvalue

Case Study: 1D Profile

• At each point in parameter space, calculate a $\Delta \chi^2(\vec{\theta})$

$$\Delta \chi^2 = \chi^2 \left(\vec{\theta} \right) - \chi^2 \left(\vec{\theta}_{best} \right)$$

- We end up with the trajectory that minimizes $\Delta \chi^2$ along one axis
 - Profile over other parameters
- Can we use a standard χ^2 ?

Wilks' theorem

- A $\Delta \chi^2$ distribution converges to a standard χ^2 if two conditions are met:
 - 1. Large Statistics
 - 2. Parameters are sufficiently far from physical boundaries
 - A $\Delta \chi^2$ distribution converges to a standard χ^2 if two conditions are met:
 - 1. Large Statistics
 - 2. Parameters are sufficiently far from physical boundaries

Wilks' theorem

- A $\Delta \chi^2$ distribution converges to a standard χ^2 if two conditions are met:
 - K Large Statistics
 - Parameters are sufficiently far from physical boundaries

Total $\overline{\nu}_e$ Observed	18
Total Prediction	15.9
Wrong-sign	1.1
Beam Bkgd.	3.5
Cosmic Bkgd.	0.7
Total Bkgd.	5.3

F

Feldman-Cousins Procedure

- Wilks' result is a convenience if his conditions are met
- If we could find a true $\Delta \chi^2$ distribution, we could calculate a p-value from it just like any other distribution function and quote a true significance
- So let's do that... empirically
- Recall a p-value is like proportion of your test statistic that is distributed beyond a certain value
- So if we can find a similar proportion of an empirical distribution, we can quote a significance

Feldman-Cousins Procedure

- At a given point in parameter space we want to know, "does our prediction at a set of test parameters, $\vec{\theta}_{test}$, agree with our data?"
 - We need a $\Delta \chi^2$ distribution where this is true in order to reject our hypothesis
 - i.e, In a world where the true parameters are $\hat{\theta}_{test}$, given statistical fluctuations, how would the $\Delta \chi^2$ test statistic be distributed?
 - 1. Generate data at θ_{test} that is Poisson-fluctuated (pseudoexperiment) in order to get value of $\Delta \chi^2$
 - a. Do this *many* times to build a distribution
 - 2. Find the proportion of pseudoexperiments above observed $\Delta \chi^2$
 - 3. Quote a significance based off that p-value

Correcting a contour

- The same thing can be done in 2D
 - Like 1D profiles: Now we find the surface in parameter space that minimizes $\Delta \chi^2$
 - Draw lines of constant significance (p-value)
- Left-skewed distribution:
 - Decreases $\Delta \chi^2_{crit}$

Correcting a contour

- The same thing can be done in 2D
 - Like 1D profiles: Now we find the surface in parameter space that minimizes $\Delta \chi^2$
 - Draw lines of constant significance (p-value)
- Left-skewed distribution:
 - Decreases $\Delta \chi^2_{crit}$

Computational considerations

- We need to generate $\Delta \chi^2$ distributions at each point in parameter space that we're sampling
 - Profiles: 1,210 bins
 - Contours: 471 bins
- In each bin, we need at least 3,000 pseudoexperiments in $\Delta \chi^2$ to generate an accurate empirical distribution
- In previous years, this has been done on the FermiGrid with results in ~4 weeks
- With the addition of antineutrino data and a longer list of systematics, the FermiGrid was no longer an option

Required No. Bins	Required No. Pseudoexperiments
1,681	6,724,000

NERSC – Lawrence Berkeley National Lab

(National Energy Research Scientific Computing)

CORI – Phase I

- Intel "Haswell" at 2.3 GHz
- Total Cores: 76,416
- Capable of 2.81 PFlops
- 32 cores share 128 GB memory
- Each core can support 2 FC jobs

CORI – Phase II

- Intel "Knights Landing" (KNL) at 1.4 GHz
- Total Cores: 658,784
- Capable of 29.5 PFlops
- 68 cores share 96 GB memory
- Each core can support 1 FC job

The NERSC Advantage

First Run

- Peaked over 1 million cores
 - Largest Condor pool ever!
- Noticed the fits were misbehaving due to added complexity
- NERSC allowed us to correct for this unforeseen complication and quickly turn around results

Second Run

- Peaked ~700,000 cores
 - Second Largest Condor pool ever!
- Over 9 million total points
- 36 hours

NOvA Claimed CPUs 👻

1018422

The NERSC Advantage

2017 v Analysis*

•	Fitting 5 histograms	٠	Fitting 10 histograms
•	4 profiles	٠	10 profiles
•	4 contours	٠	4 contours
•	~ 4 weeks to completion (FermiGrid)	٠	36 hours to completion (NERSC)
•	2 minutes per $\Delta \chi^2$ (NERSC)	٠	10 minutes per $\Delta \chi^2$
٠	Reproduced on NERSC in a few hours	٠	36 hours to completion (NERSC)
		•	~ 5 months on FermiGrid

2018 \overline{v} + v Analysis

Results and Conclusions

- Feldman-Cousins Corrections have a large effect on our results
- Low statistics and physical boundaries require an empirical approach to stating a significance
- Part of a larger project: HEP Data Analytics on HPC
 - Pythia8 and detector simulation tuning for LHC experiments
 - Improve performance and precision of neutrino cross-section analyses
- We hope to develop tools made available to all members of the HEP community in achieving similar advances

NOvA Preliminary 0.7 No Feldman-Cousins - 3σ 0.6 $sin^2 \theta_{23}$ 0.5 0.4 Feldman-Cousins + Best Fit $\square 2\sigma \square 3\sigma$ **1**σ NH-0.3 0.7 No Feldman-Cousins 3σ 0.6 $sin^2 \theta_{23}$ 0.5 0.4 Feldman-Cousins $\square 3\sigma$ IH -0.3 2π $\frac{3\pi}{2}$ $\frac{\pi}{2}$ π δ_{CP}

Thank you

How we run on CORI

- Docker Images: Like a Virtual Machine, but has a direct line to the machine's kernel
- What is in our image:
 - Slf6.7
 - NOvASoft
 - Spectra/inputs to the FC root macro
- Jobs submitted to CORI mount the image
 - Each job can run a separate image instance, called a *container*, on available threads

How we run on CORI

- Submit to CORI like a giant Rubix Cube
 - Each compute node has a number of threads that each run a separate instance of the macro
 - Each macro runs over all bins few FC points in each bin
 - Scale by requesting a large number of nodes
- Wait in regular queue: ~ 3 days for big jobs
- Make a reservation: instant access to

requested resources

Inverted Hierarchy Rejection

- $H_o: \Delta m_{32}^2 < 0$
- Need a distribution where this is true
- Profile out dependencies on the value of Δm_{32}^2
- Let $\Delta \chi^2 = 0$ if $\vec{\theta}$ is in Inverted Hierarchy

Observed $\Delta \chi^2$	Significance
2.47	1.77

