FERMILAB-SLIDES-18-109-LDRD

Simulation of Conduction Cooled SRF Cavity

Jessica Thompson, University of Alabama

SIST Final Presentation

6 August 2018

This manuscript has been authored by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy, Office of Science, Office of High Energy Physics.

Radio Frequency (RF) Cavities

- Heavily used in research and industry
- Elliptical geometry resonates at a particular frequency
- Particles are accelerated as they move through each cell
- Accelerating gradient E_{acc} quantifies energy particles gain

Superconducting RF (SRF) Cavities

- Superconductors have very low energy losses
- Cavity must be kept below critical temperature (9.25 K for niobium)
- Liquid helium coolant is a major complexity

Conduction Cooling

- Replace liquid helium with a cryocooler
- Conduction cooling is a possibility due to technological advancements
 - Cryocoolers are commercially available and can cool to 4 K or below
 - Nb₃Sn coating reduces cavity heat dissipation

Cryomech PT420 Pulse Tube Refrigerator

Cryocooler Measurements

- Measured the temperature of stage 2 as a function of heat input to stage 1 (H1) and to stage 2 (H2)
- Measured amplitude of cryocooler temperature oscillations
- Frequency of oscillation is about 1 Hz

Simulated Geometry

Simulation Procedure

Heat Transfer Across Thermal Link

- Heat flux is applied at weld faces of rings
- Constant temperature is applied at cryocooler plate
 - Used cryocooler
 measurements to
 determine this
 temperature
- Temperature at weld faces is measured

Heat Transfer Across Thermal Link

- Cavity temperature rises with dissipated power
- Dissipated power P_d can be approximated from E_{acc}

$$P_d = \frac{d^2 E_{acc}{}^2 R_S}{G\left(\frac{R}{Q}\right)}$$

d = length of cell *Rs* = surface resistance *G, R/Q* = known factors

Cryocooler Oscillations

- Apply heat flux at weld faces
- Apply time-varying cryocooler temperature
- Measure time-varying temperature at weld faces
- Oscillations dampen before reaching cavity

RF Fields Inside Cavity

Heat Transfer Across Cavity

- Use magnetic field *H* to find dissipated power on cavity walls $dP_d = \frac{1}{2}R_s|H|^2 dA$
- Model heat flow from cavity walls to notches at constant temperature T_n

Heat Transfer Across Cavity

- Average temperature of cavity and maximum temperature of cavity are close to equal
 - Average temperature is a useful measure

辈 Fermilab

Heat Transfer Across Full Geometry

- Model heat flow from cavity walls to cryocooler plate
- Temperature difference is sum of difference from previous simulations

Conclusions

- At an accelerating gradient of 12 MV/m or less, the cavity temperature is less than 7 K
- The temperature across the cavity is nearly spatially uniform
- Temperature oscillations in cryocooler dampen before reaching the cavity
- Conduction cooling this geometry with a cryocooler is viable

Acknowledgements

Thanks to Ram Dhuley, Mike Geelhoed, Charles Thangaraj, Oleg Prokofiev, Ivan Gonin, Andrei Lunin, Aaron Sauers, Sandra Charles, Judy Nunez, Laura Fields, and the SIST Committee

