FERMILAB-SLIDES-18-088-ND

New $v_e + \bar{v}_e$ appearance results from NOvA

Bruce Howard | Indiana University

This document was prepared by [NOvA Collaboration] using the resources of the Fermi National Accelerator Laboratory (Fermilab), a U.S. Department of Energy, Office of Science, HEP User Facility. Fermilab is managed by Fermi Research Alliance, LLC (FRA), acting under Contract No. DE-AC02-07CH11359.

New Perspectives 2018 19 June 2018

Context

- Many details in talk from J. Vasel
- Functionally-similar near and far detectors separated by 810 km
- In addition to v_µ disappearance, can study appearance v_µ→v_e (v̄_µ→v̄_e) to probe 3-flavor neutrino oscillations
 - Mixing angles and octant sensitivity?
 - Mass splitting and hierarchy?
 - CP violation?
- Updated NOvA analysis with, for the first time, antineutrino beam data
 - Antineutrino dataset 6.9x10²⁰ protons on target (neutrino dataset 8.9x10²⁰ fulldetector equivalent protons on target)

Event selection for $v_e + \bar{v}_e$

- Details of reconstruction detailed in talk by M. Groh
 - Select events w/ v_e (\bar{v}_e) classifier score & reconstructed information indicating likely v_e (\bar{v}_e) candidate
 - NOvA uses CVN (Convolutional Visual Network): event classification based on final state topologies
 - Selections broken into two subcategories based on CVN electron score
 - Far detector: extra peripheral sample w/ larger cosmic background but recovers appearance signal
- Energy range of interest 1-4 GeV in far detector (0-4.5 GeV in near detector, peripheral)

- Functionally similar near, far detectors: extrapolation reduces overall systematics (reduction factor ~2)
- Near detector v_µ spectrum extrapolated to far detector given oscillation parameters forms appearance signal prediction
- Expect fewer signal events in antineutrino beam than in neutrino beam: (Flux®Cross-section) reduced for antineutrinos and somewhat less exposure in antineutrino beam

Near Detector Background

- Selected near detector candidate spectra contain only backgrounds for appearance analysis: inform far detector background prediction via far/near ratio
- Components constrained via datadriven methods
 - In antineutrino beam, for now, data/ MC differences are scaled proportionally in each energy bin to the components.
 - In neutrino beam, with higher stats, more refined method used which examines components separately.
- Decomposed ND spectra agree w/ MC by construction

Near Detector Background

- Wrong-sign (v in v beam) fraction estimate in near detector vµ selection 11%, checked w/ neutron capture rates
 - Oscillates to becomes appearance background
- Wrong-sign fraction estimate in near detector beam vertice selected background 22% for antineutrino beam in higher (purer in vertice) CVN sample. Check w/ identified protons & event kinematics

- External constraint on sin²2O₁₃ from PDG average
- Enhancement/suppression due to matter effect based on mass hierarchy.
 For normal hierarchy (NH), matter effect enhances v_e, suppresses v
 _e
 - Inverted Hierarchy (IH) opposite
- Oscillation parameters determine further v_e, v
 _e enhancement/suppression (overall and relative)
 - E.g. for $\delta_{CP}=\pi/2$, IH: suppression of v_e candidates relative to \bar{v}_e
 - Alternatively, large suppression of \bar{v}_e relative to v_e for $\delta_{CP}=3\pi/2$, NH
- Predictions range from 10-22 \bar{v}_e candidates, 30-75 v_e candidates

- External constraint on sin²2O₁₃ from PDG average
- Enhancement/suppression due to matter effect based on mass hierarchy.
 For normal hierarchy (NH), matter effect enhances v_e, suppresses v
 _e
 - Inverted Hierarchy (IH) opposite
- Oscillation parameters determine further v_e, v
 _e enhancement/suppression (overall and relative)
 - E.g. for $\delta_{CP}=\pi/2$, IH: suppression of v_e candidates relative to \bar{v}_e
 - Alternatively, large suppression of \bar{v}_e relative to v_e for $\delta_{CP}=3\pi/2$, NH
- Predictions range from 10-22 \bar{v}_e candidates, 30-75 v_e candidates

- External constraint on sin²2O₁₃ from PDG average
- Enhancement/suppression due to matter effect based on mass hierarchy.
 For normal hierarchy (NH), matter effect enhances v_e, suppresses v
 _e
 - Inverted Hierarchy (IH) opposite
- Oscillation parameters determine further v_e, v
 _e enhancement/suppression (overall and relative)
 - E.g. for $\delta_{CP}=\pi/2$, IH: suppression of v_e candidates relative to \bar{v}_e
 - Alternatively, large suppression of \bar{v}_e relative to v_e for $\delta_{CP}=3\pi/2$, NH
- Predictions range from 10-22 \bar{v}_e candidates, 30-75 v_e candidates

- External constraint on sin²2O₁₃ from PDG average
- Enhancement/suppression due to matter effect based on mass hierarchy.
 For normal hierarchy (NH), matter effect enhances v_e, suppresses v
 _e
 - Inverted Hierarchy (IH) opposite
- Oscillation parameters determine further v_e, v
 _e enhancement/suppression (overall and relative)
 - E.g. for $\delta_{CP}=\pi/2$, IH: suppression of v_e candidates relative to \bar{v}_e
 - Alternatively, large suppression of \bar{v}_e relative to v_e for $\delta_{CP}=3\pi/2$, NH
- Predictions range from 10-22 \bar{v}_e candidates, 30-75 v_e candidates

- External constraint on sin²2O₁₃ from PDG average
- Enhancement/suppression due to matter effect based on mass hierarchy.
 For normal hierarchy (NH), matter effect enhances v_e, suppresses v
 _e
 - Inverted Hierarchy (IH) opposite
- Oscillation parameters determine further v_e, v
 _e enhancement/suppression (overall and relative)
 - E.g. for $\delta_{CP}=\pi/2$, IH: suppression of v_e candidates relative to \bar{v}_e
 - Alternatively, large suppression of $\sim \bar{v}_e$ relative to v_e for $\delta_{CP}=3\pi/2$, NH
- Predictions range from 10-22 \bar{v}_e candidates, 30-75 v_e candidates

- An example for resulting prediction of candidates at far detector after constraining backgrounds with near detector and extrapolating oscillation signal prediction at a set of oscillation parameters
- Overall expectation varies based on oscillation parameters by changing the appearance signal and oscillated wrong-sign background
- Measured best-fit oscillation parameters will be the ones which give best agreement of overall expectation and the data (for *both* the ∇_e appearance and ∇_μ disappearance)

Opening the box

v_e, v _e Results

- In neutrino beam, select
 <u>58 v_e candidates</u>
 - Background prediction: 15.1 events
 - ~12 from beam (< 1 wrong-sign oscillated) and ~3 cosmic origin
- In antineutrino beam, select $18 \overline{v}_e$ candidates
 - Background prediction: 5.3 events
 - Mostly of beam origin (~1 wrongsign oscillated), <1 cosmic

• >4 σ evidence for \bar{v}_e appearance!

v_e, v _e Results

- In neutrino beam, select
 <u>58 v_e candidates</u>
 - Background prediction: 15.1 events
 - ~12 from beam (< 1 wrong-sign oscillated) and ~3 cosmic origin
- In antineutrino beam, select $18 \ \overline{v}_e \ candidates$
 - Background prediction: 5.3 events
 - Mostly of beam origin (~1 wrongsign oscillated), <1 cosmic

• >4 σ evidence for \bar{v}_e appearance!

Best fit prediction is for 59.0 v_e candidates and 15.9 \overline{v}_e candidates

Joint $\bar{v}_{\mu}, \bar{v}_{e}$ Results

• Joint analysis best fit prefers:

Normal hierarchy $sin^2\Theta_{23} = 0.58\pm0.03$ $\delta_{CP} = 0.17\pi$ $\Delta m_{32}^2 = (2.51^{+0.12} \cdot 0.08) \times 10^{-3} \text{ eV}^2$ Normal hierarchy preferred at 1.80Exclude $\delta_{CP} = \pi/2$ in IH at > 30Non-maximal mixing preferred at 1.80Upper octant preference at similar level

- Full joint analysis requires statistical corrections via pseudo-experiment (Feldman-Cousins procedure)
 - The story and importance of this procedure is the subject of next talk (D. Doyle)

Summary

- Updated analysis now incorporates antineutrino beam for the first time (nearly 7x10²⁰ protons on target)
 - Includes previous data set of nearly 9x10²⁰ (full-detector equivalent) protons on target with neutrino beam
- First strong evidence (>4 σ) for long-baseline \bar{v}_e appearance in antineutrino beam!
 - Achieved this in first \bar{v} analysis due to excellent beam performance
- Joint \overline{v}_{μ} disappearance and \overline{v}_{e} appearance analysis has slight preference towards normal mass hierarchy and non-maximal Θ_{23} [upper octant]
- Further data and analysis upgrades are expected to provide further sensitivity to key oscillation parameters in the coming years

http://novaexperiment.fnal.gov

Neutrino Oscillation

H. Nunokawa, S. Parke, J. W. F. Valle. "CP Violation and neutrino oscillations." *Prog.Part.Nucl.Phys.*, 60 (2008) 338-402

$$P(v_{\mu} \rightarrow v_{e}) = \sin^{2}\Theta_{23} \sin^{2}2\Theta_{13} \frac{\sin^{2}(\Delta_{31} - aL)}{(\Delta_{31} - aL)^{2}} \Delta_{31}^{2}$$

+ $\sin^{2}\Theta_{23} \sin^{2}\Theta_{13} \sin^{2}\Theta_{12} \frac{\sin(\Delta_{31} - aL)}{(\Delta_{31} - aL)} \Delta_{31} \frac{\sin(aL)}{(aL)} \Delta_{21} \cos(\Delta_{31} + \delta)$
+ $\cos^{2}\Theta_{23} \sin^{2}2\Theta_{12} \frac{\sin^{2}(aL)}{(aL)^{2}} \Delta_{21}^{2}$

To first order, where

 $\Delta_{ij} = \Delta m_{ij}^2 L / 4E$ $a = G_F N_e / \sqrt{2}$

And in the case of antineutrinos, the sign of the CP violating phase (δ) and sign of "a" flip.

Recall v_{μ} Result

- Details in D. Torbunov talk
- Select 113 v_{\mu} candidates in neutrino beam and 65 \bar{v}_{μ} candidates in antineutrino beam
 - Expecting $730^{+38}_{-49} v_{\mu}$ candidates in neutrino beam and $266^{+12}_{-14} \bar{v}_{\mu}$ candidates in antineutrino beam, in case of no oscillations
 - Cosmic background prediction ~2 events in neutrino beam and <1 event in antineutrino beam
- The results of the v_{μ} and \bar{v}_{μ} disappearance and the v_e and \bar{v}_e appearance are then studied in a joint analysis and result in a joint oscillation fit in 3 neutrino paradigm

Recall \bar{v}_{μ} Result

- Select 113 v_{μ} candidates in neutrino beam and 65 \bar{v}_{μ} candidates in antineutrino beam
 - Expecting $730^{+38}_{-49} v_{\mu}$ candidates in neutrino beam and $266^{+12}_{-14} \bar{v}_{\mu}$ candidates in antineutrino beam, in case of no oscillations

Future sensitivity

Mass hierarchy sensitivity 3σ by 2020 for most favorable parameters. Can reach 3σ by 2024 for wider range of parameters.

Event selection for $v_e + \bar{v}_e$

- Details of reconstruction detailed in talk by M. Groh
- NOvA uses CVN (Convolutional Visual Network) to perform event classification based on final state topologies
- Select events w/ v_e (\bar{v}_e) classifier score & reconstructed information indicating likely v_e (\bar{v}_e) candidate
 - Near detector and far detector selection broken into two subcategories based on CVN electron score.
 - Far detector has further peripheral sample with larger cosmic background but recovers appearance signal
- Energy estimator for v_e, \bar{v}_e characterizes energy deposits as coming from EM activity (or not) utilizing CVN on specific prongs. Estimator is 2nd-order polynomial in EM energy and non-EM energy
 - 11% E resolution in neutrino beam, 9% antineutrino
 - Energy range of interest 0-4.5 GeV in near detector, 1-4 GeV in far detector (0-4.5 GeV in peripheral)

Near detector background

- Muon-removed electron (MRE) events replace muons in selected near detector v_{μ} data candidates with electron showers of same momentum
 - Takes advantage of hadronic components directly from data
 - Electron shower simulation
 - Probes understanding of selection efficiency for v_e events

Example

- Muon-removed electron (MRE) events replace muons in selected near detector v_μ data candidates with electron showers of same momentum
 - Takes advantage of hadronic components directly from data
 - Electron shower simulation
 - Probes understanding of selection efficiency for v_e events

 Muon-removed bremsstrahlung (MRBrem) removes muons from far detector cosmic data and keeps the bremsstrahlung electron shower

- Muon-removed bremsstrahlung (MRBrem) removes muons from far detector cosmic data and keeps the bremsstrahlung electron shower
 - Probes understanding of selection efficiency for $v_{\rm e}$ events

NOvA flux

• For v_e appearance analysis, characterization of the v_μ beam (which oscillates to signal) and the inherent v_e background component in the beam are important

- Since NOvA has functionally similar near and far detector, extrapolation procedure reduces a number of systematic effects
 - Makes flux uncertainties quite small; greatly reduces cross-section uncertainties

Joint $\bar{v}_{\mu}, \bar{v}_{e}$ Results

 Joint analysis is statistics limited in the major oscillation parameter results (sin²Θ₂₃, Δm₃₂², δ_{CP})

Neutron systematic

- Scale amount of energy deposited by some neutrons to cover the discrepancy at low energy
- Shifts mean v_{μ} energy by 1% in antineutrino beam and 0.5% in neutrino beam
 - Resolution changed by fractions of a percent
- Negligible impact found on selection efficiency

