LArIAT In 10 Minutes

New Perspectives 2018

Hunter Sullivan University of Texas at Arlington On behalf of the LArIAT Collaboration at Fermilab

This document was prepared by [LArIAT Collaboration] using the resources of the Fermi National Accelerator Laboratory (Fermilab), a U.S. Department of Energy, Office of Science, HEP User Facility. Fermilab is managed by Fermi Research Alliance, LLC (FRA), acting under Contract No. DE-AC02-07CH11359.

What is LArIAT?

- LArIAT (Liquid Argon In A Test beam) is a 170-liter-active-volume TPC exposed to a charged particle beam
 - Auxiliary detectors to tag particle species and incident momenta
- The LArIAT program aims to characterize LArTPC response for particles and energy ranges relevant for DUNE
 - Pions, Kaons, Muons, Electrons, Protons

What is LArIAT?

- LArIAT (Liquid Argon In A Test beam) is a 170-liter-active-volume TPC exposed to a charged particle beam
 - Auxiliary detectors to tag particle species and incident momenta
- The LArIAT program aims to characterize LArTPC response for particles and energy ranges relevant for DUNE
 Ideal environment for validating
 - Pions, Kaons, Muons, Electrons, Protons

Ideal environment for validating reconstruction and PID alogithms, and testing new detector technologies!

Beamline at FTBF

PID: Wire Chambers and TOF

PID: Wire Chambers and TOF

Inside the Cryostat

- Pulse shaping and amplifying cold ASICs
 - Run 2: ~70:1 S/N
- Scintillation light readout
 - PMTs/SiPMs
 - ARAPUCA light trap
- Wavelength shifting reflector foils shifts scintillation light to visible

- Improved light yield and uniformity

LArIAT Physics Goals and R&D

- Inclusive and exclusive hadron-argon cross sections
 - Pion-Ar
 - Kaon-Ar
 - Proton-Ar
- e/γ shower identification
- Particle ID and reconstruction
- Ionization and scintillation light yield studies

e-initiated shower candidate

Measuring the Cross-Section: Thin-Slab Method

$$P_{Survival} = e^{-\sigma_{TOT} n \delta X}$$

$$P_{Interacting} = \frac{N_{Interacting}}{N_{Incident}}$$

$$\sigma_{TOT} \approx \frac{1}{n\delta X} \frac{N_{interacting}(E_i)}{N_{incident}(E_i)}$$

π[–]—Ar and K⁺—Ar Total Hadronic Cross Section

Credit: Elena Gramellini

PixLAr: Pixelated Liquid Argon

- Replaced wire planes with pixel PCB
 - Based on the option being considered for DUNE ND
 - 72 cm² active pixel area
 - Total number of pixels: 28,800
- Had to make use of analog multiplexing scheme to accommodate existing cold electronics (480 channels)
 - Dedicated cold electronics currently in development
- ArCLight Detector (Developed by Bern)
 - Similar to ARAPUCA light trap, but uses WLS plastic
- Main goals of PixLAr
 - Feasibility of pixelated LArTPC
 - Use test beam to develop tools and perform physics measurements

PixLAr: The Pixel Plane

•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	٠	•	•	•	•	•	•	•	•	•	٠	٠	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	۰	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	۰	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	٠	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	٠	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
																															_			_	_			—							

- Broken into two halves
- Pixels are grouped into 8x15 arrays called Regions Of Interest (ROI) outlined by conductive traces
 - Each ROI is mapped to an individual readout channel
- Each PCB contains 120 ROI

 \bullet \bullet

PixLAr: The Pixel Plane

- Each pixel from each ROI is mapped to the same readout channel
- Each ROI contains 120 pixels
 - 120 ROI * 2 PCBs * 120 pixels/ROI/PCB = 28,800 pixels

PixLAr: Reconstruction

- A match is made when a pixel pulse and ROI pulse overlap in time which gives direct access to 3D space points
 - Track fitting and calorimetry are in development
- Ambiguities still arise but are much easier to handle
- Even with multiplexing scheme, can resolve multiple tracks

14

Conclusion

- LArIAT is devoted to the precise characterization and calibration of LArTPCs
 - Optimizing charged particle reconstruction and ID
 - Testing new technologies
- Valuable input for short and long baseline experiments
 - Inclusive hadron-argon cross-section measurements

• Coming soon

- Exclusive channels

- Stay tuned!
- Light collection/shower separation studies

Thank you!

Backup slides

PID: Aerogel Cherenkov Counters and MURS

- Pions and muons produce Cherenkov light differently for certain momenta ranges
- Muons will penetrate further into the range stack
 Hunter Sullivan | UT Arlington

- Inspired by ARAPUCA
- Inner cavity filled with polymer sheet doped with WLS dye (long attenuation length)
- Low volume, several square meter coverage

