

FERMILAB-SLIDES-18-069-CMS

Simulation of CMS Phase 2 Pixel Tracker for HL-LHC

Bahareh Roozbahani

USCMS FPIX Simulation Group

This manuscript has been authored by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy, Office of Science, Office of High Energy Physics.

CMS pixel detector is a unique tracking detector

- $\rightarrow~$ All-silicon technology
- \rightarrow Key element in efficient and precise reconstruction of tracks/interaction vertices and heavy flavor tagging

- Tracker is the closest to the beam-line \rightarrow <u>Difficult environment</u>
 - ightarrow High instantaneous luminosity ($\sim 10^{34} cm^{-2} s^{-1}$)
- \rightarrow Large number of pp interactions per bunchcrossing (pileup)
- → Expecting increase in instantaneous luminosity, pileup up to 140 to 200 at HL-LHC

event above, overlaid with 20 pileup interactions

CMS Pixel Detector Upgrade

$\textbf{Phase0} \rightarrow \textbf{Phase1}$

- Added extra barrel layer and endcap disk
- Layers closer to the beam-line
- \rightarrow improvement in tracking and b-tagging
- ► Barrel: 48M → 79M pixels Forward: 18M → 45M pixels
- Moved from analog to digital readout

CMS Pixel Detector Phase2 Upgrade

Inner Tracker (Pixel Detector):

- \rightarrow Same number of Barrel layers (4) as the current detector
- $\rightarrow~$ Increase the endcap disks to 12 disks

Improved resolution

ightarrow Increasing granularity/smaller pixels (x6 smaller pixel area)

Maintain low digi occupancy

New Perspectives 2018

lune 18 2018

- 1) Simulation of the detector geometry using tkLayout
 - → geometry A: 4 barrel layer, 12 endcap disks $25 \times 100 \times 150 \ \mu m^3$ pixels → geometry B: 4 barrel layer, 12 endcap disks $50 \times 50 \times 150 \ \mu m^3$ pixels
- 2) Simulation of desired physics processes using particle gun (Pythia8) and Detector response (Geant4)
 - $\rightarrow\,$ Ten Muon process with 200 pileup overlaid, simulated in geometry A and geometry B
 - $\rightarrow~$ Output is a collection of simulated hits
- ► 3) Digitization (CMSSW)
 - $\rightarrow~$ Convert simulated hits to format similar to experimental raw data (digis)

Simulation of the Detector Response

Digitization

Occupancy Study

• Higher digi occupancy in the barrel for 50x50 μm^2 comparing to 25x100 μm^2

Larger charge collection in 50x50 μm^2 in the barrel, similar deposition in endcap

step 1) Local Reconstruction

 $\rightarrow\,$ Clustering adjacent pixel digis that are above $\,\,\rightarrow\,\,$ certain threshold with 2 dimensional matrix algorithm $\,\rightarrow\,\,$

→ Inputing clustered digis in a position estimator algorithm that take into account Lorentz drift to produce point measurements (RecHits)

step 2) Track Reconstruction

- \rightarrow Inputs are RecHits
 - combinatory track finder (CTF) algorithm, combines reconstructed hits into tracks iteratively

Track transverse impact parameter (d_{xy}) Resolution

• d_{xy} Resolution is worse in 50x50 μm^2 geometry, particularly at high p_T

Track longitudal impact parameter (d_z) Resolution

► d_z Resolution is better in 50x50 μm^2 geometry, specially for higher p_T tracking particles

Track p_T Resolution

► d_{p_T} Resolution is similar for 25×100 μm^2 and 50×50 μm^2 geometry, slightly worsen for higher p_T in 50×50 μm^2

We have studied the pixel detector performance for 2 scenarios:

- $\rightarrow~$ 25x100 $\mu {\it m}^2$ pixel size
- ightarrow 50x50 μ m 2 pixel size
- Digi occupancy is somewhat higher in barrel for 50x50 μm^2
- Larger charge collection in 50x50 μm^2 comparing to 25x100 μm^2
- d_{xy} resolutions are worse for 50x50 μm^2 in most η bins
- d_z resolutions are better for 50x50 μm^2 in most η bins
- ▶ p_T resolutions are are similar for 50x50 μm^2 and 25x100 μm^2 at low p_T , but becomes worse for 50x50 μm^2 at $p_T > 100$ GeV.

Backup Slides

Digi Rates in Endcap (FPIX1: Disks 1-4)

Digi Rates in Endcap (FPIX1: Disks 1-4)

Digi Rates in Endcap (FPIX2: Disks 1-4)

d_{xy} Resolution vs. η

 d_{xy} Resolution is worse in 50x50 geometry, particularly at high p_T .

 d_{xy} Resolution is slightly worse for 25x100 with template CPEs comparing to 25x100 with generic CPEs.

d_z Resolution vs. η

d_z Resolution is better in 50x50 geometry, specially for higher p_T tracking particles.

 d_z Resolution is similar for 25x100 with template CPEs comparing to 25x100 with generic CPEs.