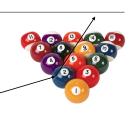
SuperCDMS in 10 Minutes

Ziqing Hong, for the SuperCDMS Collaboration June 18, 2018 New Perspectives 2018

NORTHWESTERN

UNIVERSITY

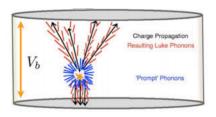
This document was prepared by [SuperCDMS Collaboration] using the resources of the Fermi National Accelerator Laboratory (Fermillab), a U.S. Department of Energy, Office of Science, HEP User Facility. Fermilab is managed by Fermi Research Alliance, LLC [FRA], acting under Contract No. DE-ACQ2-off-CH11359



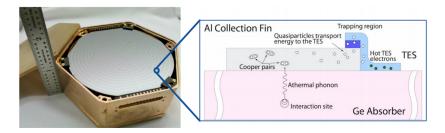
Dark Matter Direct Detection

- ▶ Dark matter passes through the earth all the time
 - About 20 million/hand/sec
 - ► Assuming O(10) GeV/c²mass

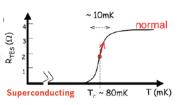
- ▶ Direct detection experiments measure them via their elastic scattering off target nucleus
 - ▶ Very rare
 - Or we would have seen it by now...
 - ► Expect very low-energy rec Nuclear Recoils
 - ► Leave little to no trace
- Experimental requirement
 - Large exposure
 - Ultra sensitive detectors
 - Low backgrounds


Direct Detection and SuperCDMS

- Cryogenic Dark Matter Search
- Germanium and Silicon detectors
 - ► Tens of kilograms of detector mass next generation
 - ► Can scale up if needed
- ▶ Transition Edge Sensors (TES)
 - Operated at 60 mK or below
 - ▶ Down to O(10) eV sensitivity
 - Use state of the art cold electronics for the best signal to noise
- Operate deep underground, with layers of shielding
 - SNOLAB, 2000 m underground
 - Meticulous choice of low radioactivity material and extra care to cleanliness
 - Robust shielding scheme
 - ▶ 0.1 background events /kg/keV/day

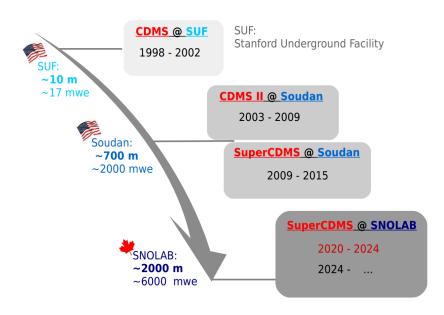


SuperCDMS Detector Principle

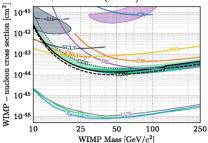


- Cool down Ge or Si crystal to near 0K
- Dark matter scatter off nucleus in the crystal
- Creates lattice vibration in crystals
 - Athermal phonons
- ► TES deposited on the crystal surface serves to detect phonons

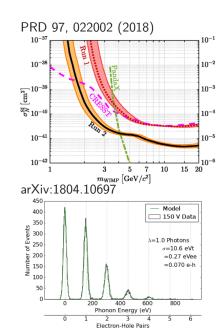
TES as Phonon Detectors



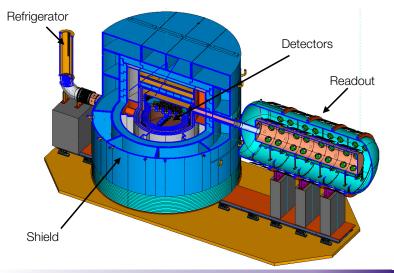
- Bring TES to the middle of its superconducting transition
- ► Collect phonons with Aluminum of the fins, then focus their energy towards the TES


- ▶ Like an antenna
- ▶ Small change in temperature \rightarrow measurable change in resistance \rightarrow Great signal to noise

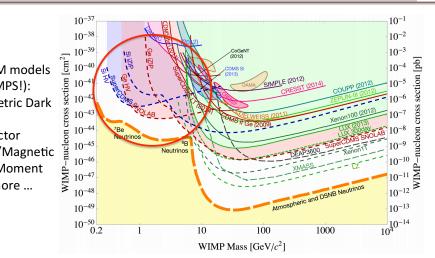
Past and future of SuperCDMS



SuperCDMS Soudan Results

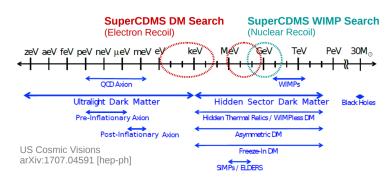


- Many great results from SuperCDMS Soudan
- Recent results show sensitivity of O(10) eV


SuperCDMS SNOLAB

SuperCDMS SNOLAB @ the Ladder Lab

N



CDMS SNOLAB focused on low mass DM region er three orders of magnitude better sensitivity

Ziging Hong, for the SuperCDMS Collaboration

SuperCDMS Electron Recoil

 SuperCDMS is also sensitive to sub-GeV dark matter through electron recoil signal search

Conclusions

- Dark matter direct detection helps identify dark matter properties
- SuperCDMS looking for lower mass dark matter
 - ▶ Below 10 GeV/ c^2
- ► Employs germanium and silicon crystals equipped with transition edge sensors
 - Ultra high sensitivity and low energy threshold
- Many great results from previous operations
- Moving to SNOLAB
 - At the forefront of dark matter direct detection over its previous runs at Soudan.
 - Expect turning on in 2020
- Stay tuned

Backup Slides

Backup slides