

FERMILAB-SLIDES-18-064-ND

Excess of Electron-Like Events in MiniBooNE

En-Chuan Huang on behalf of MiniBooNE collaboration

This document was prepared by [MiniBooNE Collaboration] using the resources of the Fermi National Accelerator Laboratory (Fermilab), a U.S. Department of Energy, Office of Science, HEP User Facility. Fermilab is managed by Fermi Research Alliance, LLC (FRA), acting under Contract No. DE-AC02-07CH11359

Neutrino 2018, Heidelberg, Germany

Outline

- The LSND Anomaly
- MiniBooNE experiment
- Observed excess
- Allowed region and other possibilities

MiniBooNE

- Similar L/E
 - MiniBooNE ~500m/500MeV
 - LSND ~30m/30MeV
- 800-ton mineral oil Cherenkov detector
- Different systematics
 - Different flux, event signatures, and backgrounds from LSND
- Horn polarity determines v or \overline{v} mode
- Flux monitor for short baseline neutrino program (SBN)
- Well-understood detector with 26 publications(4900+ citations) in different channels, as well as recent
 - v_{μ} from K^+ decay at rest from NuMI beam
 - Dark matter search

4

KDAR

"First Measurement of Monoenergetic Muon Neutrino Charged Current Interactions", PRL 120 141802 (2018) (Editor's Suggestion)

KDAR=Kaon Decay At Rest

horns

40 m

NuMI

beam

target

- KDAR neutrinos from the NuMI beamline absorber have been isolated based on energy reconstruction and timing.
- First measurement of ω (energy transferred to the nucleus) with a known energy, weak-interaction-only nuclear probe.
- Results provide a standard candle for understanding ν_{μ} CC events at a known energy (236 MeV).
- An associated data release website allows any model prediction (T_{μ} or ω) to be compared with the data.

MiniBooNE

decay pipe

675 m

background

86 m

5 m

KDAR

Dark Matter Search in Beam-Dump Mode

PRL 118, 221803 (2017)

Editor's Suggestion

- First dedicated search for direct detection of accelerator-produced dark matter in a proton beamline
 - Searched for the dark matter to elastically scatter off nucleons
- Beam-dump mode reduced the v flux by ~50
- The goal was to test vector portal model interpretation of g-2 (ruled out)
- At time of publication: set world leading limits in the vector portal dark matter model with a dark matter mass between 0.01 and 0.3 GeV
- New results are expected later in 2018
 - Inelastic scatter to produce π^0 s through Δ decay

Decay Pipe

Elastic scattering off electrons

Target

New MiniBooNE Oscillation Results with Neutrino Data Set Doubled arXiv:1805.12028

submitted to PRL

- Extra data allows better calibrations and cross checks
- Second data set to look at consistency
- Improved background estimates from observed data and constraints
 - Dirt and π^0
- Larger data set leads to smaller statistical uncertainty on signal and background measurements

Data Set

- 15+ years of running in neutrino, antineutrino, and beam dump mode. More than 30×10^{20} POT to date.
- Result of a combined 12.84×10^{20} POT in ν mode + 11.27×10^{20} POT in $\bar{\nu}$ mode is presented in this talk

РОТ

Event Signatures

- Examples of v_{μ} CCQE v_e CCQE, and NC π^0 event topologies
- Use primarily Cherenkov light
- Compare fits of different track reconstruction hypotheses for PID
- Insensitive to the difference between single photon and single electron (time of flight might help)

Data vs MC (Selection Process)

- $m_{\gamma\gamma}$ is shown
- Cuts are applied in the order of
 - a. Only precuts (no PID cut)
 - b. $e-\mu$ Likelihood cut
 - c. $e-\pi$ Likelihood cut
 - $d.~m_{\gamma\gamma}$ cut
- Background outside the oscillation cut window is well understood by MC
- Other two PID distributions are in the backup slides

Detector Stability

Detector remains stable within 2% for data sets separated by ~8 years

Similar check is done for Michel electrons

MiniBooNE Analysis

- Standard 2- ν oscillation model is used: $P(L, E) = \sin^2 2\theta \times \sin^2(1.267\Delta m^2 L/E)$
- $\sin^2 2\theta \equiv \sin^2 2\theta_{\mu e} \approx 4 |U_{\mu 4}|^2 |U_{e 4}|^2$ at the MiniBooNE mass splitting range
 - In a 3(active) + 1(sterile) model, $\sin^2 2\theta_{\mu e}$ is assumed small
- v_e CCQE-like events are constrained by the v_μ CCQE-like events
- Maximum likelihood is used
 - For a $\nu + \bar{\nu}$ analysis, a simultaneous fit was conducted for ν_e , ν_μ , $\bar{\nu}_e$, and $\bar{\nu}_\mu$ distributions

	ν mode 12.84×10 ²⁰ ΡΟΤ	$\overline{oldsymbol{ u}}$ mode 11.27×10^{20} POT	Combined
Data	1959	478	2437
Unconstrained Background	1590.5	398.2	1988.7
Constrained Background	1577.8	398.7	1976.5
Excess	$381.2 \pm 85.2 \\ 4.5\sigma$	$79.3 \pm 28.6 \\ 2.8\sigma$	$460.5 \pm 95.8 \\ 4.8\sigma$
0.26% (LSND) $ u_{\mu} \rightarrow v_{e}$	463.1	100.0	563.1

- Total excess for neutrino + antineutrino: $460.5 \pm 95.8(4.8\sigma)$
- Combined with LSND (3.8 σ), total significance is at 6.1 σ

Excess: Old vs New in ν Mode

data sets (KS prob =76%)

Excess: Neutrino vs Anti-neutrino

 Excess in neutrino and antineutrino mode is qualitatively consistent

Allowed Region

L/E

• Average E_{ν}^{QE} of each bin is used

 MiniBooNE neutrino, MiniBooNE antineutrino and LSND are consistent in appearance probability and L/E

Combined Fit with LSND

- Combined fit of MiniBooNE $\nu + \overline{\nu}$ mode and LSND is at 6σ level
- Assuming no correlation between MiniBooNE and LSND
- Best fit of MiniBooNE and LSND combined is consistent with our latest result
- Note: a large sin² 2θ is unphysical for a pure 3+1 model

Example of an Empirical Exotic Model: An MSW-Like Resonance

$$C = \sqrt{\cos^2 2\theta (1 - E/E_{res})^2 + \sin^2 2\theta}$$

$$\sin^2 2\theta_M = \sin^2 2\theta / C^2$$

$$\Delta m_M^2 = C\Delta m^2$$

$$P(E \ll E_{res}, L) \approx \sin^2 2\theta \times \sin^2 (1.267\Delta m^2 L/E)$$

$$P(E \approx E_{res}, L) = \sin^2 2\theta_M \times \sin^2 (1.267\Delta m^2_M L/E)$$

$$P(E \gg E_{res}, L) \approx 0$$

Insipred by J. Assadi *et al.*, arXiv:1712.08019 & G. Karagiorgi, M. H. Shaevitz, J. M. Conrad arXiv:1202.1024

An MSW-Like Resonance Model

Conclusion

- MiniBooNE confirms LSND excess at 4.8 σ , with a combined significance at 6.1 σ
- MiniBooNE continues data-taking, and analysis in the future will include time-of-flight information to better constrain backgrounds
- MicroBooNE will confirm whether excess is due to electrons or photons
- SBN will confirm whether the excess is due to neutrino oscillations
- Thanks to Fermilab for MiniBooNE operation (15 y) & for great beam delivery